-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
62 lines (45 loc) · 1.48 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
import joblib
def main():
# load dataset
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['target'] = iris.target
# split data
x = df.drop(columns=["target"])
y = df.target
x_train, x_test, y_train, y_test = train_test_split(
x,
y,
test_size=0.2,
random_state=42
)
# train
model = LogisticRegression(max_iter=200)
# model = KNeighborsClassifier(n_neighbors=3)
# model = DecisionTreeClassifier(random_state=42)
# model = SVC()
model.fit(x_train, y_train)
# evaluate
train_accuracy = model.score(x_train, y_train)
print(f"train accuracy: {train_accuracy}")
y_pred = model.predict(x_train)
train_accuracy = accuracy_score(y_train, y_pred)
print(f"train accuracy: {train_accuracy}")
test_accuracy = model.score(x_test, y_test)
print(f"test accuracy: {test_accuracy}")
y_pred = model.predict(x_test)
test_accuracy = accuracy_score(y_test, y_pred)
print(f"test accuracy: {test_accuracy}")
# save the model
path = "model.joblib"
joblib.dump(model, path)
if __name__ == "__main__":
main()