-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
33 lines (27 loc) · 1.39 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torchvision.datasets.cifar as cifar
from torch.utils.data import DataLoader as dl
import torchvision.transforms as transforms
class dataloaders:
def __init__(self, train_bs=128, test_bs=100):
self.train_bs = train_bs
self.test_bs = test_bs
def return_train_transform(self):
return transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
def return_traindl(self):
trainset = cifar.CIFAR10(root='./cifar', download=True, train=True, transform=self.return_train_transform())
trainloader = dl(trainset, batch_size=self.train_bs, shuffle=True)
return trainloader
def return_test_transform(self):
return transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
def return_testdl(self):
testset = cifar.CIFAR10(root='./cifar', download=True, train=False, transform=self.return_test_transform())
testloader = dl(testset, batch_size=self.test_bs, shuffle=True)
return testloader
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
# 3 X 32 X 32
if __name__ == '__main__':
best_acc = 0
start_epoch = 0