-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathutils.lua
329 lines (279 loc) · 10.4 KB
/
utils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
local utils = {}
-- Transform the coordinates from the original image space to the cropped one
function utils.transform(pt, center, scale, res, invert)
-- Define the transformation matrix
local pt_new = torch.ones(3)
pt_new[1], pt_new[2] = pt[1], pt[2]
local h = 200*scale
local t = torch.eye(3)
t[1][1], t[2][2] = res/h, res/h
t[1][3], t[2][3] = res*(-center[1]/h+0.5), res*(-center[2]/h+0.5)
if invert then
t = torch.inverse(t)
end
local new_point = (t*pt_new):sub(1,2):int()
return new_point
end
-- Crop based on the image center & scale
function utils.crop(img, center, scale, res)
local l1 = utils.transform({1,1}, center, scale, res, true)
local l2 = utils.transform({res,res}, center, scale, res, true)
local pad = math.floor(torch.norm((l1 - l2):float())/2 - (l2[1]-l1[1])/2)
if img:nDimension() < 3 then
img = torch.repeatTensor(img,3,1,1)
end
local newDim = torch.IntTensor({img:size(1), l2[2] - l1[2], l2[1] - l1[1]})
local newImg = torch.zeros(newDim[1],newDim[2],newDim[3])
local height, width = img:size(2), img:size(3)
local newX = torch.Tensor({math.max(1, -l1[1]+1), math.min(l2[1], width) - l1[1]})
local newY = torch.Tensor({math.max(1, -l1[2]+1), math.min(l2[2], height) - l1[2]})
local oldX = torch.Tensor({math.max(1, l1[1]+1), math.min(l2[1], width)})
local oldY = torch.Tensor({math.max(1, l1[2]+1), math.min(l2[2], height)})
newImg:sub(1,newDim[1],newY[1],newY[2],newX[1],newX[2]):copy(img:sub(1,newDim[1],oldY[1],oldY[2],oldX[1],oldX[2]))
newImg = image.scale(newImg,res,res)
return newImg
end
function utils.getPreds(heatmaps, center, scale)
if heatmaps:nDimension() == 3 then heatmaps = heatmaps:view(1, unpack(heatmaps:size():totable())) end
-- Get locations of maximum activations
local max, idx = torch.max(heatmaps:view(heatmaps:size(1), heatmaps:size(2), heatmaps:size(3) * heatmaps:size(4)), 3)
local preds = torch.repeatTensor(idx, 1, 1, 2):float()
preds[{{}, {}, 1}]:apply(function(x) return (x - 1) % heatmaps:size(4) + 1 end)
preds[{{}, {}, 2}]:add(-1):div(heatmaps:size(3)):floor():add(1)
for i = 1,preds:size(1) do
for j = 1,preds:size(2) do
local hm = heatmaps[{i,j,{}}]
local pX, pY = preds[{i,j,1}], preds[{i,j,2}]
if pX > 1 and pX < 64 and pY > 1 and pY < 64 then
local diff = torch.FloatTensor({hm[pY][pX+1]-hm[pY][pX-1], hm[pY+1][pX]-hm[pY-1][pX]})
preds[i][j]:add(diff:sign():mul(.25))
end
end
end
preds:add(-0.5)
-- Get the coordinates in the original space
local preds_orig = torch.zeros(preds:size())
for i = 1, heatmaps:size(1) do
for j = 1, heatmaps:size(2) do
preds_orig[i][j] = utils.transform(preds[i][j],center,scale,heatmaps:size(3),true)
end
end
return preds, preds_orig
end
function utils.shuffleLR(opts, x)
local dim
if x:nDimension() == 4 then
dim = 2
else
assert(x:nDimension() == 3)
dim = 1
end
local matched_parts = nil
if opts.dataset == 'AFLWPIFA' then
matched_parts = {
{1,17}, {2,16}, {3,15},
{4,14}, {5,13}, {6,12}, {7,11}, {8,10},
{18,27},{19,26},{20,25},{21,24},{22,23},
{37,46},{38,45},{39,44},{40,43},
{42,47},{41,48},
{32,36},{33,35},
{51,53},{50,54},{49,55},{62,64},{61,65},{68,66},{60,56},
{59,57}
}
else
matched_parts = {
{1,17}, {2,16}, {3,15},
{4,14}, {5,13}, {6,12}, {7,11}, {8,10},
{18,27},{19,26},{20,25},{21,24},{22,23},
{37,46},{38,45},{39,44},{40,43},
{42,47},{41,48},
{32,36},{33,35},
{51,53},{50,54},{49,55},{62,64},{61,65},{68,66},{60,56},
{59,57}
}
end
for i = 1,#matched_parts do
local idx1, idx2 = unpack(matched_parts[i])
local tmp = x:narrow(dim, idx1, 1):clone()
x:narrow(dim, idx1, 1):copy(x:narrow(dim, idx2, 1))
x:narrow(dim, idx2, 1):copy(tmp)
end
return x
end
function utils.flip(x)
local y = torch.FloatTensor(x:size())
for i = 1, x:size(1) do
image.hflip(y[i], x[i]:float())
end
return y:typeAs(x)
end
function utils.calcDistance(predictions,groundTruth)
local n = predictions:size()[1]
gnds = torch.Tensor(n,16,2)
for i=1,n do
gnds[{{i},{},{}}] = groundTruth[i].points
end
local dists = torch.Tensor(predictions:size(2),predictions:size(1))
-- Calculate L2
for i = 1,predictions:size(1) do
for j = 1,predictions:size(2) do
if gnds[i][j][1] > 1 and gnds[i][j][2] > 1 then
dists[j][i] = torch.dist(gnds[i][j],predictions[i][j])/groundTruth[i].headSize
else
dists[j][i] = -1
end
end
end
return dists
end
--http://stackoverflow.com/questions/640642/how-do-you-copy-a-lua-table-by-value
function table.copy(t)
if t == nil then
return {}
end
local u = { }
for k, v in pairs(t) do u[k] = v end
return setmetatable(u, getmetatable(t))
end
-- originally created in torch dp package, by nicholas leonard
function torch.swapaxes(tensor, new_axes)
-- new_axes : A table that give new axes of tensor,
-- example: to swap axes 2 and 3 in 3D tensor of original axes = {1,2,3},
-- then new_axes={1,3,2}
local sorted_axes = table.copy(new_axes)
table.sort(sorted_axes)
for k, v in ipairs(sorted_axes) do
assert(k == v, 'Error: new_axes does not contain all the new axis values')
end
-- tracker is used to track if a dim in new_axes has been swapped
local tracker = torch.zeros(#new_axes)
local new_tensor = tensor
-- set off a chain swapping of a group of intraconnected dimensions
_chain_swap = function(idx)
-- if the new_axes[idx] has not been swapped yet
if tracker[new_axes[idx]] ~= 1 then
tracker[idx] = 1
new_tensor = new_tensor:transpose(idx, new_axes[idx])
return _chain_swap(new_axes[idx])
else
return new_tensor
end
end
for idx = 1, #new_axes do
if idx ~= new_axes[idx] and tracker[idx] ~= 1 then
new_tensor = _chain_swap(idx)
end
end
return new_tensor
end
function utils.bounding_box(iterable)
local mins = torch.min(iterable, 1):view(2)
local maxs = torch.max(iterable, 1):view(2)
local center = torch.FloatTensor{maxs[1]-(maxs[1]-mins[1])/2, maxs[2]-(maxs[2]-mins[2])/2}
return center, (maxs[1]-mins[1]+maxs[2]-mins[2])/190 --center and scale
end
local function subrange(t, first, last)
local sub = {}
for i=first,last do
sub[#sub + 1] = t[i]
end
return sub
end
function utils.getFileList(opts)
opts.dataset = string.upper(opts.dataset)
local fileLists = {}
for f in paths.files('dataset/'..opts.dataset,".jpg") do
-- Construct the content
local orig_pts = torch.load('dataset/'..opts.dataset..'/'..f:sub(1,#f-4)..'.t7')
if orig_pts ~= nil then
local pts = torch.swapaxes(orig_pts.pt3d_68[{{1,2},{}}],{2,1})
local center, scale = utils.bounding_box(pts)
local dataPts = {}
dataPts.center = center
dataPts.scale = scale
dataPts.image = 'dataset/'..opts.dataset..'/'..f
fileLists[#fileLists+1] = dataPts
end
if (opts.mode == 'demo' and #fileLists==100) then fileLists=subrange(fileLists,90,100); break end
end
return fileLists
end
-- Requires gnuplot
function utils.plot(surface, points, size)
if points:nDimension()~=2 then
points = points:view(points:size(2),2)
end
gnuplot.figure(1)
gnuplot.raw("set size ratio -1")
gnuplot.raw("set xrange [0:"..size[1].."]")
gnuplot.raw("set yrange [0:"..size[2].."]")
gnuplot.raw("unset key; unset tics; unset border;")
gnuplot.raw("set multiplot layout 1,1 margins 0.05,0.95,.1,.99 spacing 0,0")
gnuplot.raw("plot '"..surface.."' binary filetype=jpg with rgbimage")
gnuplot.raw(" set yrange ["..size[2]..":0] ")
local x = points[{{},{1}}]:contiguous():view(68)
local y = points[{{},{2}}]:contiguous():view(68)
gnuplot.plot(x, y, '+')
gnuplot.raw("unset multiplot")
end
local function displayPCKh(dists, idxs, title, disp_key)
local xs = torch.linspace(0,0.5,30)
local ys = torch.zeros(xs:size(1))
local total = {dists[{idxs[1],{}}]:gt(-1):sum(),
dists[{idxs[2],{}}]:gt(-1):sum()}
for i = 1, xs:size(1) do
ys[i] = 0.5*((dists[{idxs[1],{}}]:lt(xs[i]):sum()-(dists:size(2)-total[1]))/total[1]+(dists[{idxs[2],{}}]:lt(xs[i]):sum()-(dists:size(2)-total[2]))/total[2])
end
local command = {xs,ys,'-'}
gnuplot.raw('set title "'..title..'"')
if not disp_key then
gnuplot.raw('unset key')
else
gnuplot.raw('set key font ",6" right bottom')
end
gnuplot.raw('set xrange [0:0.5]')
gnuplot.raw('set yrange [0:1]')
gnuplot.plot(unpack(command))
end
function utils.calculateMetrics(dists)
gnuplot.raw('set bmargin 1')
gnuplot.raw('set lmargin 3.2')
gnuplot.raw('set rmargin 2')
gnuplot.raw('set multiplot layout 2,3 title "MPII Validation (PCKh)"')
gnuplot.raw('set xtics font ",6"')
gnuplot.raw('set xtics font ",6"')
displayPCKh(dists, {9,10}, 'Head')
displayPCKh(dists, {2,5}, 'Knee')
displayPCKh(dists, {1,6}, 'Ankle')
gnuplot.raw('set tmargin 2.5')
gnuplot.raw('set bmargin 1.5')
displayPCKh(dists, {13,14}, 'Shoulder')
displayPCKh(dists, {12,15}, 'Elbow')
displayPCKh(dists, {11,16}, 'Wrist', true)
gnuplot.raw('unset multiplot')
local threshold = 0.5
dists:apply(function(x)
if x>=0 and x<= threshold then
return 1
elseif x>threshold then
return 0
end
end)
local count = torch.zeros(16)
local sums = torch.zeros(16)
for i=1,16 do
dists[i]:apply(function(x)
if x ~= -1 then
count[i] = count[i] + 1
sums[i] = sums[i] + x
end
end)
end
local partNames = {'Head', 'Knee', 'Ankle', 'Shoulder', 'Elbow', 'Wrist', 'Hip'}
local partsC = torch.Tensor({{9,10},{2,5},{1,6},{13,14},{12,15},{11,16},{3,4}})
print('PCKh results:')
for i=1,#partNames do
print(partNames[i]..': ',(sums[partsC[i][1]]/count[partsC[i][1]]+sums[partsC[i][2]]/count[partsC[i][1]])*100/2)
end
end
return utils