-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtransform.lua
194 lines (163 loc) · 5.73 KB
/
transform.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
local py = require 'fb.python'
function getTransform(center, scale, res)
local h = 200 * scale
local t = torch.eye(3)
-- Scale
t[1][1] = res / h
t[2][2] = res / h
-- Translate
t[1][3] = res * (-center[1] / h + .5)
t[2][3] = res * (-center[2] / h + .5)
return t
end
-- Transform the coordinates from the original image space to the cropped one
function transform(pt, center, scale, res, invert)
-- Define the transformation matrix
local pt_new = torch.ones(3)
pt_new[1], pt_new[2] = pt[1], pt[2]
local t = getTransform(center, scale, res)
if invert then
t = torch.inverse(t)
end
local new_point = (t*pt_new):sub(1,2):int()
return new_point
end
-- Crop based on the image center & scale
function crop(img, center, scale, res)
local l1 = transform({1,1}, center, scale, res, true)
local l2 = transform({res,res}, center, scale, res, true)
local pad = math.floor(torch.norm((l1 - l2):float())/2 - (l2[1]-l1[1])/2)
if img:size():size() < 3 then
img = torch.repeatTensor(img,3,1,1)
end
local newDim = torch.IntTensor({img:size()[1], l2[2] - l1[2], l2[1] - l1[1]})
local newImg = torch.zeros(newDim[1],newDim[2],newDim[3])
local height, width = img:size()[2], img:size()[3]
local newX = torch.Tensor({math.max(1, -l1[1]+1), math.min(l2[1], width) - l1[1]})
local newY = torch.Tensor({math.max(1, -l1[2]+1), math.min(l2[2], height) - l1[2]})
local oldX = torch.Tensor({math.max(1, l1[1]+1), math.min(l2[1], width)})
local oldY = torch.Tensor({math.max(1, l1[2]+1), math.min(l2[2], height)})
newImg:sub(1,newDim[1],newY[1],newY[2],newX[1],newX[2]):copy(img:sub(1,newDim[1],oldY[1],oldY[2],oldX[1],oldX[2]))
newImg = image.scale(newImg,res,res)
return newImg
end
function getPreds(heatmaps, center, scale)
if heatmaps:size():size() == 3 then heatmaps = heatmaps:view(1, unpack(heatmaps:size():totable())) end
-- Get locations of maximum activations
local max, idx = torch.max(heatmaps:view(heatmaps:size(1), heatmaps:size(2), heatmaps:size(3) * heatmaps:size(4)), 3)
local preds = torch.repeatTensor(idx, 1, 1, 2):float()
preds[{{}, {}, 1}]:apply(function(x) return (x - 1) % heatmaps:size(4) + 1 end)
preds[{{}, {}, 2}]:add(-1):div(heatmaps:size(3)):floor():add(.5)
-- Get the coordinates in the original space
local preds_orig = torch.zeros(preds:size())
for i = 1,heatmaps:size(1) do
for j = 1,heatmaps:size(2) do
preds_orig[i][j] = transform(preds[i][j],center,scale,heatmaps:size(3),true)
end
end
return preds, preds_orig
end
function evaluate(predictions,groundTruth)
local n = predictions:size()[1]
gnds = torch.Tensor(n,16,2)
for i=1,n do
gnds[{{i},{},{}}] = groundTruth[i].points
end
local dists = torch.Tensor(predictions:size(2),predictions:size(1))
-- Calculate L2
for i = 1,predictions:size(1) do
for j = 1,predictions:size(2) do
if gnds[i][j][1] > 1 and gnds[i][j][2] > 1 then
dists[j][i] = torch.dist(gnds[i][j],predictions[i][j])/groundTruth[i].headSize
else
dists[j][i] = -1
end
end
end
return dists
end
function calculateMetrics(dists,opts)
local pdists = dists:clone()
local threshold = (function() if opts.dataset =='mpii' then return 0.5 else return 0.2 end end)()
dists:apply(function(x)
if x>=0 and x<=threshold then
return 1
elseif x>threshold then
return 0
end
end)
local count = torch.zeros(16)
local sums = torch.zeros(16)
for i=1,16 do
dists[i]:apply(function(x)
if x ~= -1 then
count[i] = count[i] + 1
sums[i] = sums[i] + x
end
end)
end
local partNames = {'Head', 'Knee', 'Ankle', 'Shoulder', 'Elbow', 'Wrist', 'Hip'}
local partsC = torch.Tensor({{9,10},{2,5},{1,6},{13,14},{12,15},{11,16},{3,4}})
print('PCKh results:')
for i=1,#partNames do
print(partNames[i]..': ',(sums[partsC[i][1]]/count[partsC[i][1]]+sums[partsC[i][2]]/count[partsC[i][1]])*100/2)
end
py.exec([=[
import numpy as np
import matplotlib.pyplot as plt
partsC = partsC - 1
pairs = np.array([[1,2], [2,3], [3,7], [4,5], [4,7], [5,6], [7,9], [9,10], [14,9], [11,12], [12,13], [13,9], [14,15], [15,16]])-1
var = np.arange(0,threshold+.01,0.01)
print dists.shape
f, axarr = plt.subplots(3, 2, sharex='col', sharey='row')
index = 0
for el in axarr.ravel():
el.axis([0, threshold, 0, 1])
el.set_title(partNames[index])
cum_err = np.zeros(var.shape[0])
for j in range(var.shape[0]):
cum_err[j] = (dists[[partsC[index,0],partsC[index,1]],...]<var[j]).sum().astype('float')/(count[partsC[index,0]]+count[partsC[index,1]])
el.plot(var,cum_err)
index = index + 1
plt.show()
]=],{partNames = partNames, partsC = partsC, dists = pdists, count=count, threshold = threshold})
end
-- Helper function for applying an operation whether passed a table or tensor
function applyFn(fn, t, t2)
local t_ = {}
if type(t) == "table" then
if t2 then
for i = 1,#t do t_[i] = applyFn(fn, t[i], t2[i]) end
else
for i = 1,#t do t_[i] = applyFn(fn, t[i]) end
end
else t_ = fn(t, t2) end
return t_
end
function shuffleLR(x)
local dim
if x:nDimension() == 4 then
dim = 2
else
assert(x:nDimension() == 3)
dim = 1
end
local matched_parts = {
{1,6}, {2,5}, {3,4},
{11,16}, {12,15}, {13,14}
}
for i = 1,#matched_parts do
local idx1, idx2 = unpack(matched_parts[i])
local tmp = x:narrow(dim, idx1, 1):clone()
x:narrow(dim, idx1, 1):copy(x:narrow(dim, idx2, 1))
x:narrow(dim, idx2, 1):copy(tmp)
end
return x
end
function flip(x)
local y = torch.FloatTensor(x:size())
for i = 1, x:size(1) do
image.hflip(y[i], x[i]:float())
end
return y:typeAs(x)
end