forked from optuna/optuna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_distributions.py
306 lines (233 loc) · 10.2 KB
/
test_distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import copy
import json
import pytest
from optuna import distributions
from optuna import type_checking
if type_checking.TYPE_CHECKING:
from typing import Any # NOQA
from typing import Dict # NOQA
from typing import List # NOQA
EXAMPLE_DISTRIBUTIONS = {
"u": distributions.UniformDistribution(low=1.0, high=2.0),
"l": distributions.LogUniformDistribution(low=0.001, high=100),
"du": distributions.DiscreteUniformDistribution(low=1.0, high=10.0, q=2.0),
"iu": distributions.IntUniformDistribution(low=1, high=10, step=2),
"c1": distributions.CategoricalDistribution(choices=(2.71, -float("inf"))),
"c2": distributions.CategoricalDistribution(choices=("Roppongi", "Azabu")),
} # type: Dict[str, Any]
EXAMPLE_JSONS = {
"u": '{"name": "UniformDistribution", "attributes": {"low": 1.0, "high": 2.0}}',
"l": '{"name": "LogUniformDistribution", "attributes": {"low": 0.001, "high": 100}}',
"du": '{"name": "DiscreteUniformDistribution",'
'"attributes": {"low": 1.0, "high": 10.0, "q": 2.0}}',
"iu": '{"name": "IntUniformDistribution", "attributes": {"low": 1, "high": 10, "step": 2}}',
"c1": '{"name": "CategoricalDistribution", "attributes": {"choices": [2.71, -Infinity]}}',
"c2": '{"name": "CategoricalDistribution", "attributes": {"choices": ["Roppongi", "Azabu"]}}',
}
def test_json_to_distribution():
# type: () -> None
for key in EXAMPLE_JSONS.keys():
distribution_actual = distributions.json_to_distribution(EXAMPLE_JSONS[key])
assert distribution_actual == EXAMPLE_DISTRIBUTIONS[key]
unknown_json = '{"name": "UnknownDistribution", "attributes": {"low": 1.0, "high": 2.0}}'
pytest.raises(ValueError, lambda: distributions.json_to_distribution(unknown_json))
def test_backward_compatibility_int_uniform_distribution():
# type: () -> None
json_str = '{"name": "IntUniformDistribution", "attributes": {"low": 1, "high": 10}}'
actual = distributions.json_to_distribution(json_str)
expected = distributions.IntUniformDistribution(low=1, high=10)
assert actual == expected
def test_distribution_to_json():
# type: () -> None
for key in EXAMPLE_JSONS.keys():
json_actual = distributions.distribution_to_json(EXAMPLE_DISTRIBUTIONS[key])
assert json.loads(json_actual) == json.loads(EXAMPLE_JSONS[key])
def test_check_distribution_compatibility():
# type: () -> None
# test the same distribution
for key in EXAMPLE_JSONS.keys():
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS[key], EXAMPLE_DISTRIBUTIONS[key]
)
# test different distribution classes
pytest.raises(
ValueError,
lambda: distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["u"], EXAMPLE_DISTRIBUTIONS["l"]
),
)
# test dynamic value range (CategoricalDistribution)
pytest.raises(
ValueError,
lambda: distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["c2"],
distributions.CategoricalDistribution(choices=("Roppongi", "Akasaka")),
),
)
# test dynamic value range (except CategoricalDistribution)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["u"], distributions.UniformDistribution(low=-3.0, high=-2.0)
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["l"], distributions.LogUniformDistribution(low=0.1, high=1.0)
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["du"],
distributions.DiscreteUniformDistribution(low=-1.0, high=10.0, q=3.0),
)
distributions.check_distribution_compatibility(
EXAMPLE_DISTRIBUTIONS["iu"], distributions.IntUniformDistribution(low=-1, high=1)
)
def test_contains():
# type: () -> None
u = distributions.UniformDistribution(low=1.0, high=2.0)
assert not u._contains(0.9)
assert u._contains(1)
assert u._contains(1.5)
assert not u._contains(2)
lu = distributions.LogUniformDistribution(low=0.001, high=100)
assert not lu._contains(0.0)
assert lu._contains(0.001)
assert lu._contains(12.3)
assert not lu._contains(100)
du = distributions.DiscreteUniformDistribution(low=1.0, high=10.0, q=2.0)
assert not du._contains(0.9)
assert du._contains(1.0)
assert du._contains(3.5)
assert du._contains(6)
assert du._contains(10)
assert not du._contains(10.1)
iu = distributions.IntUniformDistribution(low=1, high=10)
assert not iu._contains(0.9)
assert iu._contains(1)
assert iu._contains(4)
assert iu._contains(6)
assert iu._contains(10)
assert not iu._contains(10.1)
assert not iu._contains(11)
# IntUniformDistribution with a 'q' parameter.
iuq = distributions.IntUniformDistribution(low=1, high=10, step=2)
assert not iuq._contains(0.9)
assert iuq._contains(1)
assert iuq._contains(4)
assert iuq._contains(6)
assert iuq._contains(10)
assert not iuq._contains(10.1)
assert not iuq._contains(11)
c = distributions.CategoricalDistribution(choices=("Roppongi", "Azabu"))
assert not c._contains(-1)
assert c._contains(0)
assert c._contains(1)
assert c._contains(1.5)
assert not c._contains(3)
def test_empty_range_contains():
# type: () -> None
u = distributions.UniformDistribution(low=1.0, high=1.0)
assert not u._contains(0.9)
assert u._contains(1.0)
assert not u._contains(1.1)
lu = distributions.LogUniformDistribution(low=1.0, high=1.0)
assert not lu._contains(0.9)
assert lu._contains(1.0)
assert not lu._contains(1.1)
du = distributions.DiscreteUniformDistribution(low=1.0, high=1.0, q=2.0)
assert not du._contains(0.9)
assert du._contains(1.0)
assert not du._contains(1.1)
iu = distributions.IntUniformDistribution(low=1, high=1)
assert not iu._contains(0)
assert iu._contains(1)
assert not iu._contains(2)
iuq = distributions.IntUniformDistribution(low=1, high=1, step=2)
assert not iuq._contains(0)
assert iuq._contains(1)
assert not iuq._contains(2)
def test_single():
# type: () -> None
single_distributions = [
distributions.UniformDistribution(low=1.0, high=1.0),
distributions.LogUniformDistribution(low=7.3, high=7.3),
distributions.DiscreteUniformDistribution(low=2.22, high=2.22, q=0.1),
distributions.DiscreteUniformDistribution(low=2.22, high=2.24, q=0.3),
distributions.IntUniformDistribution(low=-123, high=-123),
distributions.IntUniformDistribution(low=-123, high=-120, step=4),
distributions.CategoricalDistribution(choices=("foo",)),
] # type: List[distributions.BaseDistribution]
for distribution in single_distributions:
assert distribution.single()
nonsingle_distributions = [
distributions.UniformDistribution(low=1.0, high=1.001),
distributions.LogUniformDistribution(low=7.3, high=10),
distributions.DiscreteUniformDistribution(low=-30, high=-20, q=2),
distributions.DiscreteUniformDistribution(low=-30, high=-20, q=10),
# In Python, "0.3 - 0.2 != 0.1" is True.
distributions.DiscreteUniformDistribution(low=0.2, high=0.3, q=0.1),
distributions.DiscreteUniformDistribution(low=0.7, high=0.8, q=0.1),
distributions.IntUniformDistribution(low=-123, high=0),
distributions.IntUniformDistribution(low=-123, high=0, step=123),
distributions.CategoricalDistribution(choices=("foo", "bar")),
] # type: List[distributions.BaseDistribution]
for distribution in nonsingle_distributions:
assert not distribution.single()
def test_empty_distribution():
# type: () -> None
# Empty distributions cannot be instantiated.
with pytest.raises(ValueError):
distributions.UniformDistribution(low=0.0, high=-100.0)
with pytest.raises(ValueError):
distributions.LogUniformDistribution(low=7.3, high=7.2)
with pytest.raises(ValueError):
distributions.DiscreteUniformDistribution(low=-30, high=-40, q=3)
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=123, high=100)
with pytest.raises(ValueError):
distributions.IntUniformDistribution(low=123, high=100, step=2)
with pytest.raises(ValueError):
distributions.CategoricalDistribution(choices=())
def test_invalid_distribution():
# type: () -> None
with pytest.warns(UserWarning):
distributions.CategoricalDistribution(choices=({"foo": "bar"},)) # type: ignore
def test_eq_ne_hash():
# type: () -> None
# Two instances of a class are regarded as equivalent if the fields have the same values.
for d in EXAMPLE_DISTRIBUTIONS.values():
d_copy = copy.deepcopy(d)
assert d == d_copy
assert not d != d_copy
assert hash(d) == hash(d_copy)
# Different field values.
d0 = distributions.UniformDistribution(low=1, high=2)
d1 = distributions.UniformDistribution(low=1, high=3)
assert d0 != d1
assert not d0 == d1
assert hash(d0) != hash(d1)
# Different distribution classes.
d2 = distributions.IntUniformDistribution(low=1, high=2)
assert d0 != d2
assert not d0 == d2
assert hash(d0) != hash(d2)
# Different types.
assert d0 != 1
assert not d0 == 1
assert d0 != "foo"
assert not d0 == "foo"
def test_repr():
# type: () -> None
# The following variable is needed to apply `eval` to distribution
# instances that contain `float('inf')` as a field value.
inf = float("inf") # NOQA
for d in EXAMPLE_DISTRIBUTIONS.values():
assert d == eval("distributions." + repr(d))
def test_uniform_distribution_asdict():
# type: () -> None
assert EXAMPLE_DISTRIBUTIONS["u"]._asdict() == {"low": 1.0, "high": 2.0}
def test_log_uniform_distribution_asdict():
# type: () -> None
assert EXAMPLE_DISTRIBUTIONS["l"]._asdict() == {"low": 0.001, "high": 100}
def test_discrete_uniform_distribution_asdict():
# type: () -> None
assert EXAMPLE_DISTRIBUTIONS["du"]._asdict() == {"low": 1.0, "high": 10.0, "q": 2.0}
def test_int_uniform_distribution_asdict():
# type: () -> None
assert EXAMPLE_DISTRIBUTIONS["iu"]._asdict() == {"low": 1, "high": 10, "step": 2}