-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
141 lines (118 loc) · 5.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#*
# @file Different utility functions
# Copyright (c) Zhewei Yao, Amir Gholami
# All rights reserved.
# This file is part of HessianFlow library.
#
# HessianFlow is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# HessianFlow is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with HessianFlow. If not, see <http://www.gnu.org/licenses/>.
#*
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
def getData(name = 'cifar10', train_bs = 128, test_bs = 1000):
if name == 'svhn':
train_loader = torch.utils.data.DataLoader(
datasets.SVHN('../data', split = 'extra', download = True,
transform = transforms.Compose([
transforms.ToTensor()
])),
batch_size = train_bs, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.SVHN('../data', split = 'test', download = True, transform = transforms.Compose([
transforms.ToTensor()
])),
batch_size = test_bs, shuffle=False)
if name == 'mnist':
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train = True, download = True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size = train_bs, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train = False, transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size = test_bs, shuffle = False)
if name == 'cifar10':
transform_train = transforms.Compose([
#transforms.RandomCrop(32, padding = 4),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='../data', train = True, download = True, transform = transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size = train_bs, shuffle = True)
testset = datasets.CIFAR10(root='../data', train = False, download = False, transform = transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size = test_bs, shuffle = False)
if name == 'cifar10da': # with data augumentation
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='../data', train = True, download = True, transform = transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size = train_bs, shuffle = True)
testset = datasets.CIFAR10(root='../data', train = False, download = False, transform = transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size = test_bs, shuffle = False)
if name == 'cifar100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR100(root='../data', train = True, download = True, transform = transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size = train_bs, shuffle = True)
testset = datasets.CIFAR100(root='../data', train = False, download = False, transform = transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size = test_bs, shuffle = False)
if name == 'tinyimagenet':
normalize = transforms.Normalize(mean = [0.44785526394844055, 0.41693055629730225, 0.36942949891090393],
std = [0.2928885519504547, 0.28230994939804077, 0.2889912724494934])
train_dataset = datasets.ImageFolder(
'../data/tiny-imagenet-200/train',
transforms.Compose([
transforms.RandomCrop(64, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = train_bs, shuffle = True, num_workers = 4, pin_memory = False)
test_dataset = datasets.ImageFolder(
'../data/tiny-imagenet-200/val',
transforms.Compose([
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size = test_bs, shuffle = False)
return train_loader, test_loader