|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "Using TensorFlow backend.\n" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "data": { |
| 17 | + "text/plain": [ |
| 18 | + "'2.0.8'" |
| 19 | + ] |
| 20 | + }, |
| 21 | + "execution_count": 1, |
| 22 | + "metadata": {}, |
| 23 | + "output_type": "execute_result" |
| 24 | + } |
| 25 | + ], |
| 26 | + "source": [ |
| 27 | + "import keras\n", |
| 28 | + "keras.__version__" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": { |
| 34 | + "collapsed": true |
| 35 | + }, |
| 36 | + "source": [ |
| 37 | + "# 5.1 - Introduction to convnets\n", |
| 38 | + "\n", |
| 39 | + "This notebook contains the code sample found in Chapter 5, Section 1 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments.\n", |
| 40 | + "\n", |
| 41 | + "----\n", |
| 42 | + "\n", |
| 43 | + "First, let's take a practical look at a very simple convnet example. We will use our convnet to classify MNIST digits, a task that you've already been \n", |
| 44 | + "through in Chapter 2, using a densely-connected network (our test accuracy then was 97.8%). Even though our convnet will be very basic, its \n", |
| 45 | + "accuracy will still blow out of the water that of the densely-connected model from Chapter 2.\n", |
| 46 | + "\n", |
| 47 | + "The 6 lines of code below show you what a basic convnet looks like. It's a stack of `Conv2D` and `MaxPooling2D` layers. We'll see in a \n", |
| 48 | + "minute what they do concretely.\n", |
| 49 | + "Importantly, a convnet takes as input tensors of shape `(image_height, image_width, image_channels)` (not including the batch dimension). \n", |
| 50 | + "In our case, we will configure our convnet to process inputs of size `(28, 28, 1)`, which is the format of MNIST images. We do this via \n", |
| 51 | + "passing the argument `input_shape=(28, 28, 1)` to our first layer." |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 2, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "from keras import layers\n", |
| 61 | + "from keras import models\n", |
| 62 | + "\n", |
| 63 | + "model = models.Sequential()\n", |
| 64 | + "model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n", |
| 65 | + "model.add(layers.MaxPooling2D((2, 2)))\n", |
| 66 | + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n", |
| 67 | + "model.add(layers.MaxPooling2D((2, 2)))\n", |
| 68 | + "model.add(layers.Conv2D(64, (3, 3), activation='relu'))" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "Let's display the architecture of our convnet so far:" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": 3, |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [ |
| 83 | + { |
| 84 | + "name": "stdout", |
| 85 | + "output_type": "stream", |
| 86 | + "text": [ |
| 87 | + "_________________________________________________________________\n", |
| 88 | + "Layer (type) Output Shape Param # \n", |
| 89 | + "=================================================================\n", |
| 90 | + "conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", |
| 91 | + "_________________________________________________________________\n", |
| 92 | + "max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 \n", |
| 93 | + "_________________________________________________________________\n", |
| 94 | + "conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 \n", |
| 95 | + "_________________________________________________________________\n", |
| 96 | + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0 \n", |
| 97 | + "_________________________________________________________________\n", |
| 98 | + "conv2d_3 (Conv2D) (None, 3, 3, 64) 36928 \n", |
| 99 | + "=================================================================\n", |
| 100 | + "Total params: 55,744\n", |
| 101 | + "Trainable params: 55,744\n", |
| 102 | + "Non-trainable params: 0\n", |
| 103 | + "_________________________________________________________________\n" |
| 104 | + ] |
| 105 | + } |
| 106 | + ], |
| 107 | + "source": [ |
| 108 | + "model.summary()" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": { |
| 114 | + "collapsed": true |
| 115 | + }, |
| 116 | + "source": [ |
| 117 | + "You can see above that the output of every `Conv2D` and `MaxPooling2D` layer is a 3D tensor of shape `(height, width, channels)`. The width \n", |
| 118 | + "and height dimensions tend to shrink as we go deeper in the network. The number of channels is controlled by the first argument passed to \n", |
| 119 | + "the `Conv2D` layers (e.g. 32 or 64).\n", |
| 120 | + "\n", |
| 121 | + "The next step would be to feed our last output tensor (of shape `(3, 3, 64)`) into a densely-connected classifier network like those you are \n", |
| 122 | + "already familiar with: a stack of `Dense` layers. These classifiers process vectors, which are 1D, whereas our current output is a 3D tensor. \n", |
| 123 | + "So first, we will have to flatten our 3D outputs to 1D, and then add a few `Dense` layers on top:" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": 4, |
| 129 | + "metadata": { |
| 130 | + "collapsed": true |
| 131 | + }, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "model.add(layers.Flatten())\n", |
| 135 | + "model.add(layers.Dense(64, activation='relu'))\n", |
| 136 | + "model.add(layers.Dense(10, activation='softmax'))" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "We are going to do 10-way classification, so we use a final layer with 10 outputs and a softmax activation. Now here's what our network \n", |
| 144 | + "looks like:" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 5, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "name": "stdout", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "_________________________________________________________________\n", |
| 157 | + "Layer (type) Output Shape Param # \n", |
| 158 | + "=================================================================\n", |
| 159 | + "conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", |
| 160 | + "_________________________________________________________________\n", |
| 161 | + "max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0 \n", |
| 162 | + "_________________________________________________________________\n", |
| 163 | + "conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 \n", |
| 164 | + "_________________________________________________________________\n", |
| 165 | + "max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0 \n", |
| 166 | + "_________________________________________________________________\n", |
| 167 | + "conv2d_3 (Conv2D) (None, 3, 3, 64) 36928 \n", |
| 168 | + "_________________________________________________________________\n", |
| 169 | + "flatten_1 (Flatten) (None, 576) 0 \n", |
| 170 | + "_________________________________________________________________\n", |
| 171 | + "dense_1 (Dense) (None, 64) 36928 \n", |
| 172 | + "_________________________________________________________________\n", |
| 173 | + "dense_2 (Dense) (None, 10) 650 \n", |
| 174 | + "=================================================================\n", |
| 175 | + "Total params: 93,322\n", |
| 176 | + "Trainable params: 93,322\n", |
| 177 | + "Non-trainable params: 0\n", |
| 178 | + "_________________________________________________________________\n" |
| 179 | + ] |
| 180 | + } |
| 181 | + ], |
| 182 | + "source": [ |
| 183 | + "model.summary()" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "markdown", |
| 188 | + "metadata": {}, |
| 189 | + "source": [ |
| 190 | + "As you can see, our `(3, 3, 64)` outputs were flattened into vectors of shape `(576,)`, before going through two `Dense` layers.\n", |
| 191 | + "\n", |
| 192 | + "Now, let's train our convnet on the MNIST digits. We will reuse a lot of the code we have already covered in the MNIST example from Chapter \n", |
| 193 | + "2." |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": 6, |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "from keras.datasets import mnist\n", |
| 203 | + "from keras.utils import to_categorical\n", |
| 204 | + "\n", |
| 205 | + "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n", |
| 206 | + "\n", |
| 207 | + "train_images = train_images.reshape((60000, 28, 28, 1))\n", |
| 208 | + "train_images = train_images.astype('float32') / 255\n", |
| 209 | + "\n", |
| 210 | + "test_images = test_images.reshape((10000, 28, 28, 1))\n", |
| 211 | + "test_images = test_images.astype('float32') / 255\n", |
| 212 | + "\n", |
| 213 | + "train_labels = to_categorical(train_labels)\n", |
| 214 | + "test_labels = to_categorical(test_labels)" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": 7, |
| 220 | + "metadata": {}, |
| 221 | + "outputs": [ |
| 222 | + { |
| 223 | + "name": "stdout", |
| 224 | + "output_type": "stream", |
| 225 | + "text": [ |
| 226 | + "Epoch 1/5\n", |
| 227 | + "60000/60000 [==============================] - 8s - loss: 0.1766 - acc: 0.9440 \n", |
| 228 | + "Epoch 2/5\n", |
| 229 | + "60000/60000 [==============================] - 7s - loss: 0.0462 - acc: 0.9855 \n", |
| 230 | + "Epoch 3/5\n", |
| 231 | + "60000/60000 [==============================] - 7s - loss: 0.0322 - acc: 0.9902 \n", |
| 232 | + "Epoch 4/5\n", |
| 233 | + "60000/60000 [==============================] - 7s - loss: 0.0241 - acc: 0.9926 \n", |
| 234 | + "Epoch 5/5\n", |
| 235 | + "60000/60000 [==============================] - 7s - loss: 0.0187 - acc: 0.9943 \n" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "data": { |
| 240 | + "text/plain": [ |
| 241 | + "<keras.callbacks.History at 0x7fbd9c4cd828>" |
| 242 | + ] |
| 243 | + }, |
| 244 | + "execution_count": 7, |
| 245 | + "metadata": {}, |
| 246 | + "output_type": "execute_result" |
| 247 | + } |
| 248 | + ], |
| 249 | + "source": [ |
| 250 | + "model.compile(optimizer='rmsprop',\n", |
| 251 | + " loss='categorical_crossentropy',\n", |
| 252 | + " metrics=['accuracy'])\n", |
| 253 | + "model.fit(train_images, train_labels, epochs=5, batch_size=64)" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "markdown", |
| 258 | + "metadata": {}, |
| 259 | + "source": [ |
| 260 | + "Let's evaluate the model on the test data:" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": 8, |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [ |
| 268 | + { |
| 269 | + "name": "stdout", |
| 270 | + "output_type": "stream", |
| 271 | + "text": [ |
| 272 | + " 9536/10000 [===========================>..] - ETA: 0s" |
| 273 | + ] |
| 274 | + } |
| 275 | + ], |
| 276 | + "source": [ |
| 277 | + "test_loss, test_acc = model.evaluate(test_images, test_labels)" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": 9, |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [ |
| 285 | + { |
| 286 | + "data": { |
| 287 | + "text/plain": [ |
| 288 | + "0.99129999999999996" |
| 289 | + ] |
| 290 | + }, |
| 291 | + "execution_count": 9, |
| 292 | + "metadata": {}, |
| 293 | + "output_type": "execute_result" |
| 294 | + } |
| 295 | + ], |
| 296 | + "source": [ |
| 297 | + "test_acc" |
| 298 | + ] |
| 299 | + }, |
| 300 | + { |
| 301 | + "cell_type": "markdown", |
| 302 | + "metadata": {}, |
| 303 | + "source": [ |
| 304 | + "While our densely-connected network from Chapter 2 had a test accuracy of 97.8%, our basic convnet has a test accuracy of 99.3%: we \n", |
| 305 | + "decreased our error rate by 68% (relative). Not bad! " |
| 306 | + ] |
| 307 | + } |
| 308 | + ], |
| 309 | + "metadata": { |
| 310 | + "kernelspec": { |
| 311 | + "display_name": "Python 3", |
| 312 | + "language": "python", |
| 313 | + "name": "python3" |
| 314 | + }, |
| 315 | + "language_info": { |
| 316 | + "codemirror_mode": { |
| 317 | + "name": "ipython", |
| 318 | + "version": 3 |
| 319 | + }, |
| 320 | + "file_extension": ".py", |
| 321 | + "mimetype": "text/x-python", |
| 322 | + "name": "python", |
| 323 | + "nbconvert_exporter": "python", |
| 324 | + "pygments_lexer": "ipython3", |
| 325 | + "version": "3.5.2" |
| 326 | + } |
| 327 | + }, |
| 328 | + "nbformat": 4, |
| 329 | + "nbformat_minor": 2 |
| 330 | +} |
0 commit comments