forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
92 lines (68 loc) · 2.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.python.tpu import tpu_function
def np_gumbel(np_random, shape, temperature, u_low=1e-9, u_high=1.0):
u = np_random.uniform(low=u_low, high=u_high, size=shape)
return -np.log(-np.log(u)) * temperature
def gumbel(shape, temperature, u_low=1e-9, u_high=1.0):
u = tf.random_uniform(shape=shape, minval=u_low, maxval=u_high)
return -tf.log(-tf.log(u)) * temperature
def chans_to_rows(x):
"""Stack channels vertically into a 1-channel image with 3x the height."""
B, H, W, C, D = x.shape # pylint: disable=invalid-name
x = tf.transpose(x, [0, 3, 1, 2, 4])
assert x.shape == (B, C, H, W, D)
x = tf.reshape(x, [B, C * H, W, D])
return x
def rows_to_chans(x, channels):
B, H, W, D = x.shape # pylint: disable=invalid-name
assert H % channels == 0
x = tf.reshape(x, [B, channels, H // channels, W, D])
x = tf.transpose(x, [0, 2, 3, 1, 4])
return x
def chans_to_interleaved_cols(x):
B, H, W, C, D = x.shape # pylint: disable=invalid-name
return tf.reshape(x, [B, H, W * C, D])
def interleaved_cols_to_chans(x, channels):
B, H, W, D = x.shape # pylint: disable=invalid-name
return tf.reshape(x, [B, H, W // channels, channels, D])
def get_warmed_up_lr(max_lr, warmup, global_step):
if warmup == 0:
return max_lr
return max_lr * tf.minimum(
tf.cast(global_step, tf.float32) / float(warmup), 1.0)
def make_train_op(optimizer, loss, trainable_variables, global_step,
grad_clip_norm):
num_cores = tpu_function.get_tpu_context().number_of_shards
# compute scaled gradient
grads_and_vars = optimizer.compute_gradients(
loss / float(num_cores), var_list=trainable_variables)
# clip gradient
clipped_grads, gnorm = tf.clip_by_global_norm(
[g for (g, _) in grads_and_vars], grad_clip_norm / float(num_cores))
grads_and_vars = [(g, v) for g, (_, v) in zip(clipped_grads, grads_and_vars)]
# optimize
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
return train_op, gnorm
def rms(variables):
return tf.sqrt(
sum([tf.reduce_sum(tf.square(v)) for v in variables]) /
sum(int(np.prod(v.shape.as_list())) for v in variables))