forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker_util.py
270 lines (224 loc) · 8.41 KB
/
worker_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training and eval worker utilities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import time
from . import logging_utils
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
class BaseModel(object):
def train_fn(self, x_bhwc):
raise NotImplementedError
def eval_fn(self, x_bhwc):
raise NotImplementedError
def samples_fn(self, x_bhwc):
raise NotImplementedError
@property
def trainable_variables(self):
raise NotImplementedError
@property
def ema(self):
raise NotImplementedError
def _make_ema_model(orig_model, model_constructor):
# Model with EMA parameters
if orig_model.ema is None:
return None
def _to_original_variable_name(name):
# map to the original variable name
parts = name.split('/')
assert parts[0] == 'ema_scope'
return '/'.join(parts[1:])
def _ema_getter(getter, name, *args, **kwargs):
v = getter(_to_original_variable_name(name), *args, **kwargs)
v = orig_model.ema.average(v)
if v is None:
raise RuntimeError('invalid EMA variable name {} -> {}'.format(
name, _to_original_variable_name(name)))
return v
with tf.variable_scope(
tf.get_variable_scope(), custom_getter=_ema_getter, reuse=True):
with tf.name_scope('ema_scope'):
return model_constructor()
def run_eval(
model_constructor,
logdir,
total_bs,
master,
input_fn,
dataset_size):
worker = EvalWorker(
master=master,
model_constructor=model_constructor,
total_bs=total_bs,
input_fn=input_fn)
worker.run(logdir=logdir, once=True)
class EvalWorker(object):
def __init__(self, master, model_constructor, total_bs, input_fn):
self.strategy = tf.distribute.MirroredStrategy()
self.num_cores = self.strategy.num_replicas_in_sync
assert total_bs % self.num_cores == 0
self.total_bs = total_bs
self.local_bs = total_bs // self.num_cores
logging.info('num cores: {}'.format(self.num_cores))
logging.info('total batch size: {}'.format(self.total_bs))
logging.info('local batch size: {}'.format(self.local_bs))
with self.strategy.scope():
# Dataset iterator
dataset = input_fn(params={'batch_size': self.total_bs})
self.eval_iterator = self.strategy.experimental_distribute_dataset(
dataset).make_initializable_iterator()
eval_iterator_next = next(self.eval_iterator)
# Model
self.model = model_constructor()
# Model with EMA parameters
self.ema_model = _make_ema_model(self.model, model_constructor)
# Global step
self.global_step = tf.train.get_global_step()
assert self.global_step is not None, 'global step not created'
# Eval/samples graphs
self.eval_outputs = self._distributed(
self.model.eval_fn, args=(eval_iterator_next,), reduction='mean')
self.samples_outputs = self._distributed(
self.model.samples_fn, args=(eval_iterator_next,), reduction='concat')
# EMA versions of the above
if self.ema_model is not None:
self.ema_eval_outputs = self._distributed(
self.ema_model.eval_fn,
args=(eval_iterator_next,),
reduction='mean')
self.ema_samples_outputs = self._distributed(
self.ema_model.samples_fn,
args=(eval_iterator_next,),
reduction='concat')
def _distributed(self, model_fn, args, reduction):
"""Sharded computation."""
def model_wrapper(inputs_):
return model_fn(inputs_['image'])
out = self.strategy.run(model_wrapper, args=args)
assert isinstance(out, dict)
if reduction == 'mean':
out = {
k: tf.reduce_mean(self.strategy.reduce('mean', v))
for k, v in out.items()
}
assert all(v.shape == [] for v in out.values()) # pylint: disable=g-explicit-bool-comparison
elif reduction == 'concat':
out = {
k: tf.concat(self.strategy.experimental_local_results(v), axis=0)
for k, v in out.items()
}
assert all(v.shape[0] == self.total_bs for v in out.values())
else:
raise NotImplementedError(reduction)
return out
def _make_session(self):
config = tf.ConfigProto()
config.allow_soft_placement = True
logging.info('making session...')
return tf.Session(config=config)
def _run_eval(self, sess, ema):
logging.info('eval pass...')
sess.run(self.eval_iterator.initializer)
all_loss_lists = collections.defaultdict(list)
run_times = []
try:
while True:
# Log progress
if run_times and len(run_times) % 100 == 0:
num_batches_seen = len(list(all_loss_lists.values())[0])
logging.info(
'eval examples_so_far={} time_per_batch={:.5f} {}'.format(
num_batches_seen * self.total_bs,
np.mean(run_times[1:]),
{k: np.mean(l) for k, l in all_loss_lists.items()}))
tstart = time.time()
results = sess.run(self.ema_eval_outputs if ema else self.eval_outputs)
run_times.append(time.time() - tstart)
for k, v in results.items():
all_loss_lists[k].append(v)
except tf.errors.OutOfRangeError:
pass
num_batches_seen = len(list(all_loss_lists.values())[0])
logging.info('eval pass done ({} batches, {} examples)'.format(
num_batches_seen, num_batches_seen * self.total_bs))
results = {k: np.mean(l) for k, l in all_loss_lists.items()}
logging.info('final eval results: {}'.format(results))
return results
def _run_sampling(self, sess, ema):
sess.run(self.eval_iterator.initializer)
logging.info('sampling...')
samples = sess.run(
self.ema_samples_outputs if ema else self.samples_outputs)
logging.info('sampling done')
return samples
def _write_eval_and_samples(self, sess, log, curr_step, prefix, ema):
# Samples
samples_dict = self._run_sampling(sess, ema=ema)
for k, v in samples_dict.items():
assert len(v.shape) == 4 and v.shape[0] == self.total_bs
log.summary_writer.images(
'{}/{}'.format(prefix, k),
np.clip(v, 0, 255).astype('uint8'),
step=curr_step)
log.summary_writer.flush()
# Eval
eval_losses = self._run_eval(sess, ema=ema)
for k, v in eval_losses.items():
log.write(prefix, [{k: v}], step=curr_step)
def run(self, logdir, once, skip_non_ema_pass=True):
"""Runs the eval/sampling worker loop.
Args:
logdir: directory to read checkpoints from
once: if True, writes results to a temporary directory (not to logdir),
and exits after evaluating one checkpoint.
"""
if once:
eval_logdir = os.path.join(logdir, 'eval_once_{}'.format(time.time()))
else:
eval_logdir = logdir
logging.info('Writing eval data to: {}'.format(eval_logdir))
eval_log = logging_utils.Log(eval_logdir, write_graph=False)
with self._make_session() as sess:
# Checkpoint loading
logging.info('making saver')
saver = tf.train.Saver()
for ckpt in tf.train.checkpoints_iterator(logdir):
logging.info('restoring params...')
saver.restore(sess, ckpt)
global_step_val = sess.run(self.global_step)
logging.info('restored global step: {}'.format(global_step_val))
if not skip_non_ema_pass:
logging.info('non-ema pass')
self._write_eval_and_samples(
sess,
log=eval_log,
curr_step=global_step_val,
prefix='eval',
ema=False)
if self.ema_model is not None:
logging.info('ema pass')
self._write_eval_and_samples(
sess,
log=eval_log,
curr_step=global_step_val,
prefix='eval_ema',
ema=True)
if once:
break