-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
302 lines (267 loc) · 9.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright (C) 2024 AIDC-AI
from configs import _DEFAULT_MAX_LENGTH, MODEL_PATH, DATA_PATH, DATASET2FILE, OUTPUT_PATH
from typing import List, Any, Dict
import transformers
import json
import re
import os
import numpy as np
import argparse
import pickle
import torch
from datetime import datetime
from pathlib import Path
from pprint import pprint
def get_max_length(model, tokenizer, _max_length=None):
if _max_length: # if max length manually set, return it
return _max_length
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
for attr in seqlen_config_attrs:
if hasattr(model.config, attr):
return getattr(model.config, attr)
if hasattr(tokenizer, "model_max_length"):
if tokenizer.model_max_length == 1000000000000000019884624838656:
return _DEFAULT_MAX_LENGTH
return tokenizer.model_max_length
return _DEFAULT_MAX_LENGTH
def handle_arg_string(arg):
if isinstance(arg, str):
if arg.lower() == "true":
return True
elif arg.lower() == "false":
return False
elif arg.startswith('torch.'):
torch_attr = arg.split('.')[1]
return getattr(torch, torch_attr)
elif arg.isnumeric():
return int(arg)
try:
return int(arg)
except ValueError:
pass
try:
return float(arg)
except ValueError:
return arg
def simple_parse_args_string(args_string):
"""
Parses something like
args1=val1,arg2=val2
Into a dictionary
"""
args_string = args_string.strip()
if not args_string:
return {}
arg_list = [arg for arg in args_string.split(",") if arg]
args_dict = {
k: handle_arg_string(v) for k, v in [arg.split(":") for arg in arg_list]
}
return args_dict
def save_json(file_path, data):
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def load_json(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def save_pickle(file_path, data):
with open(file_path, 'wb') as f:
pickle.dump(data, f)
def load_pickle(file_path):
with open(file_path, 'rb') as f:
data = pickle.load(f)
return data
def regex_replace(string, pattern, repl, count: int = 0):
"""Implements the `re.sub` function as a custom Jinja filter."""
return re.sub(pattern, repl, string, count=count)
dataset_list = ['aclue', 'anli', 'arc_challenge_25', 'arc_easy_25', 'boolq', 'cb', 'cmmlu', 'cola', 'glue', 'mmlu_5', 'mnli', 'mrpc']
from jinja2 import Environment, BaseLoader, StrictUndefined
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
env.filters["regex_replace"] = regex_replace
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def check_argument_types(parser: argparse.ArgumentParser):
"""
Check to make sure all CLI args are typed, raises error if not
"""
for action in parser._actions:
if action.dest != "help" and not action.const:
if action.type is None:
raise ValueError(
f"Argument '{action.dest}' doesn't have a type specified."
)
else:
continue
from tqdm import tqdm
def batchify(dataset, data_idx, batch_size):
if batch_size == 1:
return dataset[data_idx]
return [dataset[i] for i in range(data_idx, min(data_idx + batch_size, len(dataset)))]
def setup_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data", "-d", type=str, default=None, help="Datasets (in lower, split by `,`) e.g. `mmlu_5`"
)
parser.add_argument(
"--time_str", "-t", type=str, default="", help="Timestamp e.g. `05_30_06_13_26`"
)
parser.add_argument(
"--model", "-m", type=str, default="Qwen/Qwen1.5-7B", help="Models e.g. `Qwen/Qwen1.5-7B`"
)
parser.add_argument(
"--model_args",
"-ma",
default="",
type=str,
help="Comma separated string arguments for model, e.g. `device_map=auto`",
)
parser.add_argument(
"--tokenizer_args",
"-ta",
default="",
type=str,
help="Comma separated string arguments for tokenizer, e.g. `use_fast=False`",
)
parser.add_argument(
"--log_path",
"-lp",
default=None,
type=str,
)
parser.add_argument(
"--save_steps",
default=5000,
type=int,
help="How often to save intermediate results",
)
parser.add_argument(
"--preloaded_image_num",
default=1,
type=int,
help="The number of images pre-loaded in `__getitem__`.",
)
parser.add_argument(
"--disable_infer",
action="store_true",
help="Flag to disable infer. Default is False.",
)
parser.add_argument(
"--set_calculate_flops",
action="store_true",
help="Flag to calculate FLOPs. Default is False.",
)
parser.add_argument(
"--filter_type", "-et", type=str, default="regex", choices=['regex', 'model', 'regex,model'], help='filter type'
)
parser.add_argument(
"--filter_model", "-em", type=str, default=None, help="filter models e.g. `Qwen/Qwen1.5-7B`"
)
parser.add_argument(
"--data_url", "-du", type=str, default=None
)
parser.add_argument(
"--filter_model_args",
"-ema",
default="",
type=str,
help="Comma separated string arguments for filter model, e.g. `device_map=auto`",
)
parser.add_argument(
"--filter_tokenizer_args",
"-eta",
default="",
type=str,
help="Comma separated string arguments for filter model tokenizer, e.g. `use_fast=False`",
)
parser.add_argument(
"--batch_size",
default=1,
type=int,
help="Batch Size (Only used for retrieval)",
)
check_argument_types(parser)
args = parser.parse_args()
args.model_args = simple_parse_args_string(args.model_args)
args.tokenizer_args = simple_parse_args_string(args.tokenizer_args)
args.filter_model_args = simple_parse_args_string(args.filter_model_args)
args.filter_tokenizer_args = simple_parse_args_string(args.filter_tokenizer_args)
if args.time_str == '':
args.time_str = datetime.now().strftime('%m_%d_%H_%M_%S')
model_dict = {}
for model_path in args.model.split(','):
if os.path.isdir(model_path):
model_dict[os.path.basename(model_path)] = model_path
else:
model_dict[model_path] = os.path.join(MODEL_PATH, model_path)
args.model = model_dict
if args.filter_model is not None:
args.filter_model = os.path.join(MODEL_PATH, args.filter_model)
if args.data is None:
assert args.data_url is not None
args.data = {os.path.basename(file_name).replace('.json', ''): os.path.join(args.data_url, file_name) for file_name in os.listdir(args.data_url)}
else:
args.data = {
os.path.basename(data_name).replace('.json', ''): os.path.join(
DATA_PATH if args.data_url is None else args.data_url, DATASET2FILE.get(data_name, f'{data_name}.json')
)
for data_name in args.data.split(',')
}
args.image_url = os.path.join(DATA_PATH if args.data_url is None else args.data_url, 'images')
if args.log_path is None:
args.log_path = os.path.join(OUTPUT_PATH, args.time_str)
pprint(vars(args))
return args
class Response(Dict[str, Any]):
def __init__(self, log_dir: str, save_steps: int = 5000, rank: int = 0, world_size: int = 1):
super().__init__()
self.log_dir: str = log_dir
Path(self.log_dir).mkdir(parents=True, exist_ok=True)
self.pkl_file_path: str = os.path.join(self.log_dir, f'resps_tmp_{rank}_{world_size}.pkl')
self.json_file_path: str = os.path.join(self.log_dir, f'resps_tmp_{rank}_{world_size}.json')
self.save_steps: int = save_steps
self.load()
def load(self) -> None:
if os.path.isfile(self.pkl_file_path):
self.update(load_pickle(self.pkl_file_path))
def save(self) -> None:
if len(self) != 0:
save_pickle(self.pkl_file_path, dict(self))
save_json(self.json_file_path, dict(self))
def update(self, resp: Dict[str, Any]) -> None:
super().update(resp)
if len(self) % self.save_steps == 0:
self.save()
def __len__(self) -> int:
return super().__len__()
def keys(self) -> Any:
return super().keys()
def get_rank_and_world_size():
local_rank = int(os.environ.get('RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
return local_rank, world_size
def rank_zero_check(rank, world_size, file_name_to_format):
with open(file_name_to_format.format(rank, world_size), 'w', encoding='utf-8') as f:
f.write('done\n')
is_done = True
if rank == 0:
for i_rank in range(world_size):
done_file_name = file_name_to_format.format(i_rank, world_size)
if not os.path.exists(done_file_name):
is_done = False
print(f'{done_file_name} F Rank {i_rank} ..')
else:
print(f'{done_file_name} OK {i_rank} ..')
return is_done
def calculate_model_flops(model_wrapper, model_name):
from calflops import calculate_flops
if not hasattr(model_wrapper, 'max_length'):
model_wrapper.max_length = get_max_length(model_wrapper.model, model_wrapper.tokenizer)
flops, macs, params = calculate_flops(model=model_wrapper.model,
input_shape=(1, model_wrapper.max_length),
transformer_tokenizer=model_wrapper.tokenizer)
print(f"MODEL:{model_name} FLOPs:{flops} MACs:{macs} Params:{params}")
from PIL import Image
def load_image(image_file_path):
return Image.open(image_file_path).convert('RGB')