-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheredity.py
210 lines (173 loc) · 6.43 KB
/
heredity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import csv
import itertools
import sys
PROBS = {
# Unconditional probabilities for having gene
"gene": {
2: 0.01,
1: 0.03,
0: 0.96
},
"trait": {
# Probability of trait given two copies of gene
2: {
True: 0.65,
False: 0.35
},
# Probability of trait given one copy of gene
1: {
True: 0.56,
False: 0.44
},
# Probability of trait given no gene
0: {
True: 0.01,
False: 0.99
}
},
# Mutation probability
"mutation": 0.01
}
def main():
# Check for proper usage
if len(sys.argv) != 2:
sys.exit("Usage: python heredity.py data.csv")
people = load_data(sys.argv[1])
# Keep track of gene and trait probabilities for each person
probabilities = {
person: {
"gene": {
2: 0,
1: 0,
0: 0
},
"trait": {
True: 0,
False: 0
}
}
for person in people
}
# Loop over all sets of people who might have the trait
names = set(people)
for have_trait in powerset(names):
# Check if current set of people violates known information
fails_evidence = any(
(people[person]["trait"] is not None and
people[person]["trait"] != (person in have_trait))
for person in names
)
if fails_evidence:
continue
# Loop over all sets of people who might have the gene
for one_gene in powerset(names):
for two_genes in powerset(names - one_gene):
# Update probabilities with new joint probability
p = joint_probability(people, one_gene, two_genes, have_trait)
update(probabilities, one_gene, two_genes, have_trait, p)
# Ensure probabilities sum to 1
normalize(probabilities)
# Print results
for person in people:
print(f"{person}:")
for field in probabilities[person]:
print(f" {field.capitalize()}:")
for value in probabilities[person][field]:
p = probabilities[person][field][value]
print(f" {value}: {p:.4f}")
def load_data(filename):
"""
Load gene and trait data from a file into a dictionary.
File assumed to be a CSV containing fields name, mother, father, trait.
mother, father must both be blank, or both be valid names in the CSV.
trait should be 0 or 1 if trait is known, blank otherwise.
"""
data = dict()
with open(filename) as f:
reader = csv.DictReader(f)
for row in reader:
name = row["name"]
data[name] = {
"name": name,
"mother": row["mother"] or None,
"father": row["father"] or None,
"trait": (True if row["trait"] == "1" else
False if row["trait"] == "0" else None)
}
return data
def powerset(s):
"""
Return a list of all possible subsets of set s.
"""
s = list(s)
return [
set(s) for s in itertools.chain.from_iterable(
itertools.combinations(s, r) for r in range(len(s) + 1)
)
]
def joint_probability(people, one_gene, two_genes, have_trait):
"""
Compute and return a joint probability.
The probability returned should be the probability that
* everyone in set `one_gene` has one copy of the gene, and
* everyone in set `two_genes` has two copies of the gene, and
* everyone not in `one_gene` or `two_gene` does not have the gene, and
* everyone in set `have_trait` has the trait, and
* everyone not in set` have_trait` does not have the trait.
"""
probability = 1
for person in people:
gene_number = 1 if person in one_gene else 2 if person in two_genes else 0
trait = True if person in have_trait else False
gene_numb_prop = PROBS['gene'][gene_number]
trait_prop = PROBS['trait'][gene_number][trait]
if people[person]['mother'] is None:
# no parents, use probability distribution
probability *= gene_numb_prop * trait_prop
else:
# info about parents is available
mother = people[person]['mother']
father = people[person]['father']
percentages = {}
for ppl in [mother, father]:
number = 1 if ppl in one_gene else 2 if ppl in two_genes else 0
perc = 0 + PROBS['mutation'] if number == 0 else 0.5 if number == 1 else 1 - PROBS['mutation']
percentages[ppl] = perc
if gene_number == 0:
# 0, none of parents gave gene
probability *= (1 - percentages[mother]) * (1 - percentages[father])
elif gene_number == 1:
# 1, one of parents gave gene
probability *= (1 - percentages[mother]) * percentages[father] + percentages[mother] * (1 - percentages[father])
else:
# 2, both of parents gave gene
probability *= percentages[mother] * percentages[father]
probability *= trait_prop
return probability
def update(probabilities, one_gene, two_genes, have_trait, p):
"""
Add to `probabilities` a new joint probability `p`.
Each person should have their "gene" and "trait" distributions updated.
Which value for each distribution is updated depends on whether
the person is in `have_gene` and `have_trait`, respectively.
"""
for person in probabilities:
gene_number = 1 if person in one_gene else 2 if person in two_genes else 0
probabilities[person]["gene"][gene_number] += p
probabilities[person]["trait"][person in have_trait] += p
def normalize(probabilities):
"""
Update `probabilities` such that each probability distribution
is normalized (i.e., sums to 1, with relative proportions the same).
"""
normalized = probabilities.copy()
for person in probabilities:
for typ in ['gene', 'trait']:
summed = sum(probabilities[person][typ].values())
for category in probabilities[person][typ]:
val = probabilities[person][typ][category]
normalized_val = val / summed
normalized[person][typ][category] = normalized_val
return normalized
if __name__ == "__main__":
main()