You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+7Lines changed: 7 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -41,11 +41,18 @@ make_classification | Generate a random n-class classification problem.
41
41
make_low_rank_matrix | Generate a mostly low rank matrix with bell-shaped singular values. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html)
42
42
make_swiss_roll | Generate a swiss roll dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html)
43
43
make_hastie_10_2 | Generates data for binary classification used in Hastie et al. |[link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_hastie_10_2.html)
44
+
make_gaussian_quantiles | Generate a swiss roll dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html)
44
45
45
46
**Disclaimer**: SyntheticDatasets.jl borrows code and documentation from
46
47
[scikit-learn](https://scikit-learn.org/stable/modules/classes.html#samples-generator) in the dataset module, but *it is not an official part
47
48
of that project*. It is licensed under [MIT](LICENSE).
Copy file name to clipboardExpand all lines: src/sklearn.jl
+39Lines changed: 39 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -379,3 +379,42 @@ function generate_hastie_10_2(; n_samples::Int = 12000,
379
379
380
380
returnconvert(features, labels)
381
381
end
382
+
383
+
"""
384
+
function generate_gaussian_quantiles(; mean::Array{<:Union{Number, Nothing}, 1} = [nothing],
385
+
cov::Float64 = 1,
386
+
n_samples::Int = 100,
387
+
n_features::Int = 2,
388
+
n_classes::Int = 3,
389
+
shuffle::Bool = true,
390
+
random_state::Union{Int, Nothing} = nothing)
391
+
392
+
Generate isotropic Gaussian and label samples by quantile.
393
+
#Arguments
394
+
- `mean::Array{<:Union{Number, Nothing}, 1} = [nothing]`: The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, …).
395
+
- `cov::Float64 = 1`: The covariance matrix will be this value times the unit matrix.
396
+
- `n_samples::Int = 100`: The total number of points equally divided among classes.
397
+
- `n_features::Int = 2`: The number of features for each sample.
398
+
- `n_classes::Int = 3`: The number of classes.
399
+
- `shuffle::Bool = true`: Shuffle the samples.
400
+
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
0 commit comments