You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
make_blobs | Generate isotropic Gaussian blobs for clustering. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html)
31
-
make_moons | Make two interleaving half circles | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html)
32
-
make_s_curve | Generate an S curve dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html)
33
-
make_circles | Make a large circle containing a smaller circle in 2d | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html)
34
-
make_regression | Generate a random regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html)
35
-
make_classification | Generate a random n-class classification problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html)
36
-
make_low_rank_matrix | Generate a mostly low rank matrix with bell-shaped singular values.| [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html)
37
-
make_swiss_roll | Generate a swiss roll dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html)
make_blobs | Generate isotropic Gaussian blobs for clustering. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html)
31
+
make_moons | Make two interleaving half circles | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html)
32
+
make_s_curve | Generate an S curve dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html)
33
+
make_regression | Generate a random regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html])
34
+
make_classification | Generate a random n-class classification problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html])
35
+
make_friedman1 | Generate the “Friedman #1” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html)
36
+
make_friedman2 | Generate the “Friedman #2” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html)
37
+
make_friedman3 | Generate the “Friedman #3” regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3.html)
38
+
make_circles | Make a large circle containing a smaller circle in 2d | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html)
39
+
make_regression | Generate a random regression problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html)
40
+
make_classification | Generate a random n-class classification problem. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html)
41
+
make_low_rank_matrix | Generate a mostly low rank matrix with bell-shaped singular values. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html)
42
+
make_swiss_roll | Generate a swiss roll dataset. | [link](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html)
38
43
39
44
**Disclaimer**: SyntheticDatasets.jl borrows code and documentation from
40
45
[scikit-learn](https://scikit-learn.org/stable/modules/classes.html#samples-generator) in the dataset module, but *it is not an official part
Generate the “Friedman #1” regression problem. Sklearn interface to make_regression.
249
+
#Arguments
250
+
- `n_samples::Int = 100`: The number of samples.
251
+
- `n_features::Int = 10`: The number of features. Should be at least 5.
252
+
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
253
+
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
Generate the “Friedman #2” regression problem. Sklearn interface to make_friedman2.
274
+
#Arguments
275
+
- `n_samples::Int = 100`: The number of samples.
276
+
- `n_features::Int = 10`: The number of features. Should be at least 5.
277
+
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
278
+
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
Generate the “Friedman #3” regression problem. Sklearn interface to make_friedman3.
297
+
#Arguments
298
+
- `n_samples::Int = 100`: The number of samples.
299
+
- `noise::Union{Nothing, Float64} = nothing`: The standard deviation of the gaussian noise applied to the output.
300
+
- `random_state::Union{Int, Nothing} = nothing`: Determines random number generation for dataset noise. Pass an int for reproducible output across multiple function calls.
0 commit comments