-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
294 lines (236 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import argparse
import os
import sys
import logging
from pathlib import Path
import datetime
import shutil
import torch
import torch.nn.parallel
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from PcpKnnPatchesDataset import PcpKnnPatchesDataset
from utils.training_utils import set_randomness, save_checkpoint
import metrics
from model import NINormalNet
def gen_detail_name(args):
num_nb = int(os.path.splitext(args.train_dataset_name)[0].split('_')[-1])
outstr = 'lr_' + str(args.learning_rate) + \
'_train_batch_' + str(args.batchsize_train) + \
'_train_noise_' + args.train_noise_level + \
'_eval_noise_' + args.eval_noise_level + \
'_L2_reg_' + str(args.L2_reg) + \
'_gpu' + str(args.gpu_id) + \
'_randseed_' + str(args.randseed) + \
'_num_nb_' + str(num_nb) + \
'_' + str(args.alias) + \
'_' + str(datetime.datetime.now().strftime('%Y%m%d_%H%M'))
return outstr
def comp_loss_terms(pred, gt):
"""
:param pred: (B, N, 3)
:param gt: (B, N, 3)
:return: (1, )
"""
sin_loss = torch.mean(torch.norm(torch.cross(pred, gt, dim=2), dim=2) / (torch.norm(pred, dim=2) * torch.norm(gt, dim=2)))
return sin_loss
def parse_args():
parser = argparse.ArgumentParser('NINormalNetTrain')
parser.add_argument('--batchsize_train', type=int, default=6,
help='set to 6 (if you have 3x1080Ti) to reproduce paper results, reduce if OOM')
parser.add_argument('--batchsize_eval', type=int, default=6, help='default to 6, reduce if OOM')
parser.add_argument('--epoch', default=900, type=int)
parser.add_argument('--learning_rate', default=0.0005, type=float)
parser.add_argument('--milestones', default=[400, 800], type=int, nargs='+',
help='lr schedule milestones in training')
parser.add_argument('--lr_gamma', type=float, default=0.1, help="lr milestones gamma")
parser.add_argument('--fastdebug', default=False, action='store_true', help="debug with very small portion data")
parser.add_argument('--gpu_id', default=0, type=int)
parser.add_argument('--multi_gpu', default=True, type=bool)
parser.add_argument('--datafolder', type=str, default='./dataset_dir/pcp_knn_patch_h5_files',
help='folder contains h5 dataset')
parser.add_argument('--train_dataset_name', type=str, default='train_patchsize_2000_k_20.h5')
parser.add_argument('--eval_dataset_name', type=str, default='eval_patchsize_2000_k_20.h5')
parser.add_argument('--train_noise_level', type=str, default='none', choices=['none', '0.01', '0.05', '0.1', 'all'])
parser.add_argument('--eval_noise_level', type=str, default='none', choices=['none', '0.01', '0.05', '0.1', 'all'])
parser.add_argument('--L2_reg', type=float, default=1e-4, help='L2 regularisation for network weights')
parser.add_argument('--model_name', default='ni_normal_net', help='for checkpoint saving')
parser.add_argument('--truerand', default=False, type=bool, help="whether we want true randomness")
parser.add_argument('--randseed', default=20, help="set random seed for np, python, and torch")
parser.add_argument('--alias', type=str, default='', help="specify experiments")
return parser.parse_args()
def train_one_epoch(train_dataloader, optimizer, model, args):
model.train()
train_loss_epoch = 0
train_pgp003_epoch, train_pgp005_epoch, train_pgp010_epoch, train_pgp030_epoch, train_pgp060_epoch, train_pgp080_epoch, train_pgp090_epoch = 0, 0, 0, 0, 0, 0, 0
for batch_id, data in enumerate(tqdm(train_dataloader, desc='train_batch')):
knn_pts = data['knn_pt_list'] # (B, N, K, 3)
knn_pts = knn_pts.transpose(1, 2).contiguous() # (B, K, N, 3)
knn_pts = knn_pts.to(device='cuda:' + str(args.gpu_id), non_blocking=True) # (B, K, N, 3)
gt_normals = data['gt_normals'] # (B, N, 3)
gt_normals = gt_normals.to(device='cuda:'+str(args.gpu_id), non_blocking=True) # (B, N, 3)
pred_normals, weights = model(knn_pts)
loss = comp_loss_terms(pred_normals, gt_normals)
loss.backward()
optimizer.step()
optimizer.zero_grad()
'''Error analysis'''
pgp_ang_dic = metrics.comp_pgp_batch_unori(pred_normals, gt_normals)
train_loss_epoch += loss.item()
train_pgp003_epoch += pgp_ang_dic['pgp003'].item()
train_pgp005_epoch += pgp_ang_dic['pgp005'].item()
train_pgp010_epoch += pgp_ang_dic['pgp010'].item()
train_pgp030_epoch += pgp_ang_dic['pgp030'].item()
train_pgp060_epoch += pgp_ang_dic['pgp060'].item()
train_pgp080_epoch += pgp_ang_dic['pgp080'].item()
train_pgp090_epoch += pgp_ang_dic['pgp090'].item()
train_loss_epoch /= len(train_dataloader)
train_pgp003_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp005_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp010_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp030_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp060_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp080_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
train_pgp090_epoch /= float(len(train_dataloader.dataset) * 2000) # 2k is the number of points in each patch
return {
'loss': train_loss_epoch,
'pgp003': train_pgp003_epoch,
'pgp005': train_pgp005_epoch,
'pgp010': train_pgp010_epoch,
'pgp030': train_pgp030_epoch,
'pgp060': train_pgp060_epoch,
'pgp080': train_pgp080_epoch,
'pgp090': train_pgp090_epoch,
}
def eval_one_epoch(eval_dataloader, model, args):
model.eval()
eval_loss_epoch = 0
eval_pgp003_epoch, eval_pgp005_epoch, eval_pgp010_epoch, eval_pgp030_epoch, eval_pgp060_epoch, eval_pgp080_epoch, eval_pgp090_epoch = 0, 0, 0, 0, 0, 0, 0
for batch_id, data in enumerate(eval_dataloader):
knn_pts = data['knn_pt_list'] # (B, N, K, 3)
knn_pts = knn_pts.transpose(1, 2).contiguous() # (B, K, N, 3)
knn_pts = knn_pts.to(device='cuda:' + str(args.gpu_id), non_blocking=True) # (B, K, N, 3)
gt_normals = data['gt_normals'] # (B, N, 3)
gt_normals = gt_normals.to(device='cuda:' + str(args.gpu_id), non_blocking=True)
pred_normals, weights = model(knn_pts)
loss = comp_loss_terms(pred_normals, gt_normals)
'''Error analysis'''
pgp_ang_dic = metrics.comp_pgp_batch_unori(pred_normals, gt_normals)
eval_loss_epoch += loss.item()
eval_pgp003_epoch += pgp_ang_dic['pgp003'].item()
eval_pgp005_epoch += pgp_ang_dic['pgp005'].item()
eval_pgp010_epoch += pgp_ang_dic['pgp010'].item()
eval_pgp030_epoch += pgp_ang_dic['pgp030'].item()
eval_pgp060_epoch += pgp_ang_dic['pgp060'].item()
eval_pgp080_epoch += pgp_ang_dic['pgp080'].item()
eval_pgp090_epoch += pgp_ang_dic['pgp090'].item()
eval_loss_epoch /= len(eval_dataloader)
eval_pgp003_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp005_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp010_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp030_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp060_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp080_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
eval_pgp090_epoch /= float(len(eval_dataloader.dataset) * 2000) # 100k is the number of points in each object
return {
'loss': eval_loss_epoch,
'pgp003': eval_pgp003_epoch,
'pgp005': eval_pgp005_epoch,
'pgp010': eval_pgp010_epoch,
'pgp030': eval_pgp030_epoch,
'pgp060': eval_pgp060_epoch,
'pgp080': eval_pgp080_epoch,
'pgp090': eval_pgp090_epoch,
}
def main(args):
'''Create the log dir for this run'''
exp_root_dir = Path('./logs/')
exp_root_dir.mkdir(parents=True, exist_ok=True)
experiment_dir = Path(os.path.join(exp_root_dir, gen_detail_name(args)))
experiment_dir.mkdir(parents=True, exist_ok=True)
# copy train and model file to ensure reproducibility.
shutil.copy('./model.py', experiment_dir)
shutil.copy('./train.py', experiment_dir)
'''Logger'''
logger = logging.getLogger("NINormalNetTrain")
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(os.path.join(experiment_dir, 'log.txt'))
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
logger.info(args)
'''Summary Writer'''
writer = SummaryWriter(log_dir=experiment_dir)
'''Data Loading'''
logger.info('Load dataset ...')
train_dataset = PcpKnnPatchesDataset(datafolder=args.datafolder,
dataset_type='train',
dataset_name=args.train_dataset_name,
fastdebug=args.fastdebug,
noise_level=args.train_noise_level)
eval_dataset = PcpKnnPatchesDataset(datafolder=args.datafolder,
dataset_type='eval',
dataset_name=args.eval_dataset_name,
fastdebug=args.fastdebug,
noise_level=args.eval_noise_level)
train_dataloader = DataLoader(train_dataset, batch_size=args.batchsize_train,
shuffle=True, num_workers=10, pin_memory=True)
eval_dataloader = DataLoader(eval_dataset, batch_size=args.batchsize_eval,
shuffle=False, num_workers=10, pin_memory=True)
'''Model Loading'''
model = NINormalNet()
if args.multi_gpu:
model = torch.nn.DataParallel(model).to(device='cuda:' + str(args.gpu_id))
else:
model = model.to(device='cuda:'+str(args.gpu_id))
'''Set Optimiser'''
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.L2_reg)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_gamma)
'''Training'''
best_temp = 0.0
best_eval_pgp010 = 0.0
sys.stdout.flush()
logger.info('Start training...')
for epoch in tqdm(range(args.epoch), desc='epochs'):
logger.info('Epoch (%d/%s):', epoch + 1, args.epoch)
train_epoch_metric = train_one_epoch(train_dataloader, optimizer, model, args)
with torch.no_grad():
eval_epoch_metric = eval_one_epoch(eval_dataloader, model, args)
scheduler.step()
tqdm.write('pgp010: train: {0:.4f}, eval: {1:.4f}'.format(train_epoch_metric['pgp010'], eval_epoch_metric['pgp010']))
logger.info('pgp010: train: {0:.4f}, eval: {1:.4f}'.format(train_epoch_metric['pgp010'], eval_epoch_metric['pgp010']))
writer.add_scalar('train/loss', train_epoch_metric['loss'], epoch)
writer.add_scalar('train/pgp003', train_epoch_metric['pgp003'], epoch)
writer.add_scalar('train/pgp005', train_epoch_metric['pgp005'], epoch)
writer.add_scalar('train/pgp010', train_epoch_metric['pgp010'], epoch)
writer.add_scalar('train/pgp030', train_epoch_metric['pgp030'], epoch)
writer.add_scalar('train/pgp060', train_epoch_metric['pgp060'], epoch)
writer.add_scalar('train/pgp080', train_epoch_metric['pgp080'], epoch)
writer.add_scalar('train/pgp090', train_epoch_metric['pgp090'], epoch) # sanity check, should be always 1.0 in un-oriented normal estimation
writer.add_scalar('train/lr', scheduler.get_lr()[0], epoch)
writer.add_scalar('temp', model.module.temp if args.multi_gpu else model.temp, epoch)
writer.add_scalar('eval/loss', eval_epoch_metric['loss'], epoch)
writer.add_scalar('eval/pgp003', eval_epoch_metric['pgp003'], epoch)
writer.add_scalar('eval/pgp005', eval_epoch_metric['pgp005'], epoch)
writer.add_scalar('eval/pgp010', eval_epoch_metric['pgp010'], epoch)
writer.add_scalar('eval/pgp030', eval_epoch_metric['pgp030'], epoch)
writer.add_scalar('eval/pgp060', eval_epoch_metric['pgp060'], epoch)
writer.add_scalar('eval/pgp080', eval_epoch_metric['pgp080'], epoch)
writer.add_scalar('eval/pgp090', eval_epoch_metric['pgp090'], epoch) # sanity check, should be always 1.0 in un-oriented normal estimation
if eval_epoch_metric['pgp010'] >= best_eval_pgp010:
best_eval_pgp010 = eval_epoch_metric['pgp010']
best_temp = model.module.temp if args.multi_gpu else model.temp
logger.info('Saving model with the best pgp010: {0:.4%} at temp {1:.4f}'.format(best_eval_pgp010, best_temp))
tqdm.write('Saving model with the best pgp010: {0:.4%} at temp {1:.4f}'.format(best_eval_pgp010, best_temp))
save_checkpoint(epoch, train_epoch_metric['pgp010'], eval_epoch_metric['pgp010'], model,
optimizer, str(experiment_dir), args.model_name)
print('Best eval pgp010: {0:.4%} at temp {1:.4f}'.format(best_eval_pgp010, best_temp))
logger.info('Best eval pgp010: {0:.4%} at temp {1:.4f}'.format(best_eval_pgp010, best_temp))
print('Final temp: {0:.4f}'.format(model.module.temp if args.multi_gpu else model.temp))
logger.info('Final temp: {0:.4f}'.format(model.module.temp if args.multi_gpu else model.temp))
return
if __name__ == '__main__':
torch.backends.cudnn.enabled=False
args = parse_args()
set_randomness(args)
main(args)