-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtesting.py
79 lines (62 loc) · 2.86 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
from deepface import DeepFace
import os
# Path to directory containing images for testing
image_dir = 'train/fear'
# Check if the directory exists and contains files
if not os.path.exists(image_dir):
print(f"Directory '{image_dir}' does not exist.")
else:
print(f"Directory '{image_dir}' found.")
# List all files in the directory
files = os.listdir(image_dir)
if not files:
print(f"No files found in directory '{image_dir}'.")
else:
print(f"Files found in directory '{image_dir}': {files}")
# Load face cascade classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Initialize counters
total_images = 0
happy_detected_count = 0
# Loop through each image in the directory
for filename in files:
if filename.endswith(".jpg") or filename.endswith(".png"): # add other formats if needed
# Load the image
image_path = os.path.join(image_dir, filename)
frame = cv2.imread(image_path)
# Check if the image is loaded successfully
if frame is None:
print(f"Failed to load image: {filename}")
continue
else:
print(f"Successfully loaded image: {filename}")
total_images += 1 # Increment total image counter
# Convert frame to grayscale
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Convert grayscale frame to RGB format
rgb_frame = cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2RGB)
# Detect faces in the frame
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(faces) == 0:
print(f"No faces detected in image: {filename}")
else:
# Process each detected face
for (x, y, w, h) in faces:
# Extract the face ROI (Region of Interest)
face_roi = rgb_frame[y:y + h, x:x + w]
# Perform emotion analysis on the face ROI
result = DeepFace.analyze(face_roi, actions=['emotion'], enforce_detection=False)
# Determine the dominant emotion
emotion = result[0]['dominant_emotion']
# Print the filename and detected emotion
print(f"Image: {filename}, Detected Emotion: {emotion}")
# Check if the detected emotion is "happy"
if emotion == "fear":
happy_detected_count += 1
# Calculate and print success rate
if total_images > 0:
success_rate = (happy_detected_count / total_images) * 100
print(f"Success Rate for detecting angry emotion: {success_rate:.2f}%")
else:
print("No images processed.")