-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcreate_leaderboard.py
126 lines (116 loc) · 3.61 KB
/
create_leaderboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import sys
import numpy as np
import pandas as pd
src_path = os.path.abspath(os.path.join("src"))
if src_path not in sys.path:
sys.path.insert(0, src_path)
from samay.model import TimesfmModel, MomentModel
from samay.dataset import TimesfmDataset, MomentDataset
from samay.utils import load_args
MONASH_NAMES = [
# "weather",
"tourism_yearly",
"tourism_quarterly",
"tourism_monthly",
"cif_2016",
# "london_smart_meters",
"australian_electricity_demand",
# "wind_farms_minutely",
"bitcoin",
"pedestrian_counts",
"vehicle_trips",
"kdd_cup_2018",
"nn5_daily",
"nn5_weekly",
# "kaggle_web_traffic",
# "kaggle_web_traffic_weekly",
"solar_10_minutes",
"solar_weekly",
# "car_parts",
"fred_md",
"traffic_hourly",
"traffic_weekly",
"hospital",
"covid_deaths",
"sunspot",
"saugeenday",
"us_births",
"solar_4_seconds",
"wind_4_seconds",
# "rideshare",
"oikolab_weather",
"temperature_rain"
]
PRED_LEN = [
# 30,
4,
8,
24,
12,
# 60,
60,
# 60,
30,
48,
30,
48,
56,
8,
# 59,
# 8,
60,
5,
# 12,
12,
48,
8,
12,
30,
30,
30,
30,
60,
60,
# 48,
48,
30
]
MONASH_PATH = ["data" + "/monash/{dataset}/test/data.csv".format(dataset=dataset) for dataset in MONASH_NAMES]
DATASET_LIST = MONASH_NAMES
DATASET_PATH = MONASH_PATH
if __name__ == "__main__":
# Load the model
arg_path = "config/timesfm.json"
model_name = "TimesFM"
args = load_args(arg_path)
for dataset, dataset_path, pred_len in zip(DATASET_LIST, DATASET_PATH, PRED_LEN):
args["config"]["horizon_len"] = pred_len
tfm = TimesfmModel(**args)
print("Creating leaderboard for dataset: ", dataset)
# The Leaderboard has column header for different model names, each row is a different dataset, first column is the dataset name
# The Leaderboard is saved as a csv file
# Create the Leaderboard if it does not exist
leaderboard_dir = os.path.join("leaderboard")
if not os.path.exists(leaderboard_dir):
os.makedirs(leaderboard_dir)
leaderboard_path = os.path.join(leaderboard_dir, "leaderboard.csv")
if not os.path.exists(leaderboard_path):
df = pd.DataFrame(columns=["Dataset\Model"])
df.to_csv(leaderboard_path, encoding="utf-8", index=False)
df = pd.read_csv(leaderboard_path)
val_dataset = TimesfmDataset(name="ett", datetime_col='timestamp', path=dataset_path,
mode='test', context_len=args["config"]["context_len"], horizon_len=args["config"]["horizon_len"], normalize=False)
avg_loss, trues, preds, histories = tfm.evaluate(val_dataset)
MAE = np.mean(np.abs(trues - preds))
print("MAE: ", MAE)
print("Saving to leaderboard")
if model_name not in df.columns:
df[model_name] = np.nan
if dataset not in df["Dataset\Model"].values:
df.loc[len(df), "Dataset\Model"] = dataset
df.loc[df["Dataset\Model"] == dataset, model_name] = MAE
df.to_csv(leaderboard_path, index=False, encoding="utf-8")
print("Leaderboard updated and saved")
print("Leaderboard: ")
print(df)