-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLego Yoshi Arduino Prototype.py
485 lines (349 loc) · 24.5 KB
/
Lego Yoshi Arduino Prototype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
'''Lego Super Mario - Lego Yoshi Arduino Prototype
Advait Ukidve (September 2023)
Description
Lego Yoshi is an interactive prototype for the Lego Super Mario Interactive range of play sets.
Prerequisites
Install the required libraries using the following commands on your terminal before running this notebook:
pip install openai (OpenAI API Documentation)
pip install gTTS (Google Text-To-Speech Documentation)
Importing all the Modules
openai (for GPT Model API), gtts (for Text to Speech), serial and time (For Serial Communication with Arduino), random and datetime (for Randomisation), and colorama (for Colourful Output) '''
# Imports ----------------------------------------------------------------------------------------------------------------------------------------------------
import os
import openai # OpenAI API
from colorama import Fore, Back, Style # For fun colours and styling in the responses
import gtts # Google's Text to Speech API
from playsound import playsound
import random # For random integer generation
from datetime import datetime
# Serial Communication with Arduino
import serial
import time
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
'''Configuring the Modules
System Instructions for GPT-3.5 API: Answer and react as Yoshi from the Super Mario universe as if speaking to a 9 year old. Be optimistic, cheerful, and helpful. Use a lot of onomatopoeia and alliterations. Respond in 300 words unless the prompt contains a word count. Only use salutations in the first response.
API Key: Replace "your API Key here" with your API key. To find it out, register for OpenAI and go to this page'''
# Configuring OpenAI -----------------------------------------------------------------------------------------------------------------------------------------
openai.api_key = "your API Key here" # My OpenAI API key
INSTRUCTIONS = """Answer and react as Yoshi from the Super Mario universe as if speaking to Mario. Use a child friendly tone. Be optimistic, cheerful, and helpful. Use a lot of onomatopoeia and alliterations. Respond in 300 words unless the prompt contains a word count. Only use salutations in the first response.""" # Special instructions for the API
TEMPERATURE = 0.7 # Randomness/Creativity in the answers
TOP_P = 0.9 # Similar
MAX_TOKENS = 500 # Maximum tokens to be used per API call (for pricing)
FREQUENCY_PENALTY = 0.2 # Penalty for repeating things verbatim. Low to encourage speaking about the same things
PRESENCE_PENALTY = 0.6 # Penalty for repeating topics. High to encourage model to speak about different topics
MAX_CONTEXT_QUESTIONS = 10 # limits how many questions we include in the prompt
# Configuring Serial and Random ------------------------------------------------------------------------------------------------------------------------------
serial_port = 'COM3'
baud_rate = 9600
ser = serial.Serial(serial_port, baud_rate, timeout=1) # Establish a connection to the serial port
# Seeding Random
random.seed(datetime.now())
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
# GLOBAL VARIABLES FOR CREATING PROMPTS ----------------------------------------------------------------------------------------------------------------------
saved_response = "empty_string" # For saving the last question
# Setting up strings for prompts -------------------------------------------------------------------------------------------------------------------------------
#1 - Open-ended Storytelling as Yoshi
story_prompt = "Narrate an adventure involving Super Mario in the Mushroom Kingdom. The story should include {}, {}, and {} and take place in {}, and have 1 main event. Don't repeat main events from previous responses. Add your own creative elements to the story. Use less than 500 words."
#2 - Dialogue between two Primary Characters - Mario and one of the other electronic figurines i.e. Luigi or Peach
dialogue_prompt = "Generate a dialogue between Mario and {} based on the adventure so far."
#3 Scene Setting - Setting the scene for an 'adventure' with the other characters available in the set.
scene_prompt = "Describe a scene in {} with {} before an adventure that will involve {}. Don't describe the actual adventure. Use upto 300 words"
#4 Narration - Narrating the adventure the child just had (Recapping based on gathered data)
narration_prompt = "Narrate an adventure where Lego Mario, sitting on Yoshi's back, does the following in order: ### {} ###. Use the past tense. Don't use the following words ### Lego, toy, set ###"
#5 Hint
hint_prompt = "Give Mario a hint on how to {} in the Lego Super Mario toy set. Use less than 100 words. Don't use the following words ### Lego, toy, set ###"
#6 Yoshi's Power Ups
power_prompt = "Inform Mario about your new power gained using a {} and what you feel about it. Use less than 100 words."
#7 Reaction
react_prompt = "Mario has just performed the following action: ### {} ###. React to it using less than 30 words."
# Lists containing data used in prompt generation -----------------------------------------------------------------------------------------------------------
# Adventure Tracking - List will be updated with all the blocks Lego Mario and Yoshi interact with, in order.
main_adventure = []
# Primary characters - First person playable characters in the Lego Super Mario Sets
prim_chars = ["Mario", "Luigi", "Peach"] # List containing potentially infinite characters
# Secondary characters - Other characters in a set that are not FPP
sec_chars = ["Yoshi", "Toad", "Daisy", "Donkey Kong"] # 'Good guys' that don't have electronic dolls
antagonists = ["Bowser", "Bowser Jr.", "goombas", "King Boo", "Kamek", "Wario", "koopa troopas", "Boo"] # Antagonists
all_chars = prim_chars + sec_chars + antagonists # All characters
#print(all_chars)
# Interactive Blocks and Places
blocks = ["grass", "water", "lava", "acid"]
places = ["Bowser's Castle", "Peach's Castle", "Yoshi's Island", "Luigi's Mansion", "Piranha Plant",
"Mario's House", "King Boo's Haunted Yard", "Wiggler's Posion Swamp", "Bowser's Airship", "Kamek's Frozen Tower" ]
# Hint Strings
hint_actions = ["defeat", "get", "get through", "talk to"]
hint_subjects = ["power-ups", "coins"]
# Power-ups
powers = ["red shell", "blue shell", "green shell", "yellow shell"]
suits = ["Fire Mario", "Propeller Mario", "Cat Mario", "Builder Mario"]
# Story
stories = []
story_end = "You can use the blocks you have to re-enact the day!"
# Word counts
words = ["100", "200", "300", "500", "1000", "2000"]
# -------------------------------------------------------------------------------------------------------------------------------------------------------------
'''Function declarations
askYoshi(): Use chat completion to get response from GPT 3.5 API.
getModeration(): < unused > Moderates questions asked to GPT.
createAction(): Creates an action string for Mario.
createPrompt(): Creates prompt string to feed into API.
main(): Combines all functions to run prototype functionality.
Note: Explanations in function declarations'''
# FUNCTION: for calling OpenAI's API --------------------------------------------------------------------------------------------------------------------------
'''
Description:
This function creates an array to save all the messages and the system instructions in the format found on
OpenAI's official documentation. It then uses ChatCompletion to prompt a response.
Args:
instructions:
The instructions for the chat bot - this determines how it will behave
previous_questions_and_answers:
Chat history
new_question:
The new question to ask the bot
Returns:
The response text
'''
# -------------------------------------------------------------------------------------------------------------------------------------------------------------
def askYoshi(instructions, previous_questions_and_answers, new_question):
# Builds the messages - This will set INSTRUCTION as the system instruction when called in main()
messages = [
{ "role": "system", "content": instructions },
]
# Adds the previous questions and answers to the array messages
for question, answer in previous_questions_and_answers[-MAX_CONTEXT_QUESTIONS:]:
messages.append({ "role": "user", "content": question })
messages.append({ "role": "assistant", "content": answer })
# Adds the new question to messages
messages.append({ "role": "user", "content": new_question })
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo-16k", # Use text-davinci-003/gpt-3.5-turbo for slightly differing (but good) results.
messages=messages, # All messages array
temperature=TEMPERATURE, # See cell above for explanations
max_tokens=MAX_TOKENS,
top_p=TOP_P,
frequency_penalty=FREQUENCY_PENALTY,
presence_penalty=PRESENCE_PENALTY,
)
return completion.choices[0].message.content # Return the top response
# -------------------------------------------------------------------------------------------------------------------------------------------------------------
# FUNCTION: for moderation of questions -----------------------------------------------------------------------------------------------------------------------
"""
Description:
Check the question is safe to ask the model
Parameters:
question (str): The question to check
Returns:
Appropriate error if the question is not safe, otherwise 'None'
"""
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
def getModeration(question):
# List of all possible errors outlined by OpenAI
errors = {
"hate": "Content that expresses, incites, or promotes hate based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste.",
"hate/threatening": "Hateful content that also includes violence or serious harm towards the targeted group.",
"self-harm": "Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.",
"sexual": "Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness).",
"sexual/minors": "Sexual content that includes an individual who is under 18 years old.",
"violence": "Content that promotes or glorifies violence or celebrates the suffering or humiliation of others.",
"violence/graphic": "Violent content that depicts death, violence, or serious physical injury in extreme graphic detail.",
}
response = openai.Moderation.create(input=question)
if response.results[0].flagged:
# Gets the categories that are flagged and generates a message
result = [
error
for category, error in errors.items()
if response.results[0].categories[category]
]
return result
return None
# -----------------------------------------------------------------------------------------------------------------------------------------------------------
# CREATE ACTION FUNCTIONS -----------------------------------------------------------------------------------------------------------------------------------
"""
Description:
Creates an 'action' to record Mario's adventure by combining action words, characters, etc.
Used in:
createPrompt() to create 'action' phrases
Parameters:
mode:
1: Defeating characters 4: Getting 'n' coins
2: Getting through landscape 5: Talking to characters
3: Getting one of the four suits in the play sets 6: Talking to secondary characters
Returns:
String containing action
"""
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
def createAction(mode):
if mode == 1:
return "defeat " + antagonists[random.randint(0,7)] # Randomly choose between the 8 defined antagonists
elif mode == 2:
return "get through a pool of " + blocks[random.randint(1,3)] # 3 different kinds of blocks
elif mode == 3:
return "get the " + suits[random.randint(0,3)] + " suit" # Getting power-ups
elif mode == 4:
return "get " + str(random.randint(10,50)) + " coins" # Getting coins
elif mode == 5:
return "speak to " + prim_chars[random.randint(1,2)] # Primary characters - Other electronic figurines
elif mode == 6:
return "speak to " + sec_chars[random.randint(0,3)] # Secondary characters - Non electronic figurines
else:
pass
# Testing createAction
#print(createAction(6))
# -------------------------------------------------------------------------------------------------------------------------------------------------------------
# CREATE PROMPT FUNCTION --------------------------------------------------------------------------------------------------------------------------------------
"""
Description:
Creates a prompt for the GPT API based on 1 of the 7 proposed modes/possibilities with the Lego Yoshi
Used in:
main() to create a prompt based on Arduino input
Parameters:
mode:
1: Storytelling 5: Hint
2: Dialogue 6: Yoshi's Power-Ups
3: Scene Setting 7: Reaction
4: Narration/Recollection
sub:
Used to define further states (Like character to choose for mode 2 Dialogue). Defaults to 1.
Returns:
String containing action
"""
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
def createPrompt(mode, adventure = []):
# Open Ended Storytelling
if mode == 1:
return story_prompt.format(all_chars[random.randint(0, 14)],
all_chars[random.randint(0, 14)],
all_chars[random.randint(0, 14)],
places[random.randint(0, 9)] )
# Dialogue - One of the primary character names are added to the string (based on value of sub) and prompt is generated
elif mode == 2:
return dialogue_prompt.format(prim_chars[1])
# Scene Setting - Pre Adventure with 1 other primary character, 1 place, and 3 secondary characters/blocks
elif mode == 3:
prots = prim_chars[random.randint(0,2)] + " and " + sec_chars[random.randint(0,3)]
secs = sec_chars[random.randint(0,3)] + ", " + antagonists[random.randint(0,7)] + ", " + antagonists[random.randint(0,7)] + " and a pool of " + blocks[random.randint(1,3)]
return scene_prompt.format(places[random.randint(0, len(places))], prots, secs)
# Narration - Events in adventure[] are added to a string and the prompt is generated
elif mode == 4:
events = ""
for i in range(len(adventure)):
events += adventure[i] + ", "
return narration_prompt.format(events)
# Hint - Generating a hint for Mario
elif mode == 5:
return hint_prompt.format(createAction(random.randint(1,3))) # One of the first 4 types of actions in createAction
# Power Ups - Inform Mario about a power up you've received using one of the 4 possible coloured shells
elif mode == 6:
return power_prompt.format(powers[random.randint(0,3)]) # Randomly select one of the 4 power suits
# Reacting to Mario's actions
elif mode == 7:
return react_prompt.format(createAction(random.randint(1,6)))
# Else none
else:
return None
# Testing createPrompt
#print(createPrompt(7))
# --------------------------------------------------------------------------------------------------------------------------------------------------------------
# FUNCTION: main() ---------------------------------------------------------------------------------------------------------------------------------------------
"""
Description:
Main function. Receives input from the user and constructs prompts, passes them to GPT 3.5 API, gets response
formats the string, and prints and narrates the responses using TTS
Parameters:
None
Returns:
None
"""
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------
def main():
os.system("cls" if os.name == "nt" else "clear")
previous_questions_and_answers = [] # Keeps track of previous questions and answers
main_adventure = "" # Local empty string to update adventure with all actions, to be used for narration.
while True:
data = ser.readline().decode('utf-8').strip() # Read data from the serial port
#print(data) # For testing
#Create new_question
new_question = "" # empty string to outside scope if if-else to save question
# Creates a prompt -------------------------------------------------------------------------------------------------------------------------------------
# I hate this if-else structure. It could be a lot more elegant, just using the int form of 'data' to create cases.
# Unfortunately, due to the timing desync via serial, the format of the strings received isn't reliable. Hence this
# makeshift solution. Please fork and fix if you can!
# Case 1: Button 1 pushed.
# Scene setting -
if data == "1":
print(Fore.GREEN + Style.BRIGHT + "1: [Loading Response]") # Print Case number for reference and [Loading Response]
new_question = scene_prompt.format("Peach's Castle", "Luigi and Toad", "Donkey Kong, koopa troopas, Bowser Jr. and a pool of lava")
#Format and save the prompt as new_question
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question) # print for reference
main_adventure += "reach Peach's Castle," + " meet Luigi and Toad," # Add data to adventure tracker array
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question) # Use GPT Chat Completion to get response
previous_questions_and_answers.append((new_question, saved_response)) # Save in array with all previous questions
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response) # Print response
# Case 2: Button 2 pushed.
# Defeat a Koopa Troopa using the Fire Mario suit - Yoshi reacts to it
elif data == "2":
print(Fore.GREEN + Style.BRIGHT + "2: [Loading Response]")
new_question = react_prompt.format("defeat a koopa troopa with the Fire Mario suit")
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question)
main_adventure += " defeat a koopa troopa with the Fire Mario suit,"
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question)
previous_questions_and_answers.append((new_question, saved_response))
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response) # Print
# Case 3: Button 3 pushed.
# Narration of the adventure so far using main_adventure string of actions
elif data == "3":
print(Fore.GREEN + Style.BRIGHT + "3: [Loading Response]")
new_question = narration_prompt.format(main_adventure)
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question)
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question)
previous_questions_and_answers.append((new_question, saved_response))
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response) # Print
# Case 4: Proximity sensor detects another figurine next to it
# Dialogue Generation based on the adventure so far
elif data == "4":
print(Fore.GREEN + Style.BRIGHT + "4: [Loading Response]")
new_question = createPrompt(2)
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question)
main_adventure += " talk to Luigi"
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question)
previous_questions_and_answers.append((new_question, saved_response))
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response) # Print
# Case 5: Figurine is rotated downwards along x-axis.
# Mario gets the Propellor Mario Suit - Yoshi reacts to it
elif data == "5":
print(Fore.GREEN + Style.BRIGHT + "5: [Loading Response]")
new_question = react_prompt.format("get the Fire Mario suit")
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question)
main_adventure += " get the Fire Mario Suit,"
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question)
previous_questions_and_answers.append((new_question, saved_response))
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response) # Print
else:
pass
# LEGACY PRINTS ------------------------------------------------------------------------------------------------------------------------------------
'''
saved_response = askYoshi(INSTRUCTIONS, previous_questions_and_answers, new_question)
# Adds the new question and answer to the list of previous questions and answers
previous_questions_and_answers.append((new_question, saved_response))
# Clear string without any formatting like '\n' and/or '\' for further use in TTS/Other contexts
saved_response = saved_response.strip() # Strip all the whitespaces
saved_response = saved_response.replace("\n", " ") # Strip the newline characters
saved_response = saved_response.replace("\"", "\'") # Replace \' with just '
# Print
print(Fore.MAGENTA + Style.BRIGHT + "Prompt: " + Style.NORMAL + new_question) # Prints the prompt
print(Fore.CYAN + Style.BRIGHT + "Yoshi: " + Style.NORMAL + saved_response)''' # Prints the response
# Text to Speech - Commented out for ease of showcasing ----------------------------------------------------------------------------------------------
#t1 = gtts.gTTS(saved_response)
#t1.save(saved_response[0:3] + ".mp3") # Save as "[first 3 characters of response].mp3" so that it creates unique files
#playsound(saved_response[0:3] + ".mp3")
time.sleep(0.5)
# ------------------------------------------------------------------------------------------------------------------------------------------------------------
# Running the main() function
# Run the main() ---------------------------------------------------------------------------------------------------------------------------------------------
main()
# -------------------------------------------------------------------------------------------------------------------------------------------------------------
# Close Serial port -------------------------------------------------------------------------------------------------------------------------------------------
ser.close()
# -------------------------------------------------------------------------------------------------------------------------------------------------------------