-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnlph.py
132 lines (89 loc) · 4.15 KB
/
nlph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# conda install -c anaconda nltk
# conda install -c conda-forge wordcloud
import nltk, re
from nltk import word_tokenize
from nltk.probability import FreqDist
from nltk.corpus import stopwords
from nltk.sentiment import SentimentIntensityAnalyzer
from matplotlib import pyplot as plt
from wordcloud import WordCloud
from statistics import mean
from const import *
class NLPAnalysis:
def __init__(self, list_p1, list_p2):
self.words = set(nltk.corpus.words.words())
text_p1 = " ".join(list_p1)
text_p2 = " ".join(list_p2)
self.words_p1 = word_tokenize(text_p1)
self.words_p2 = word_tokenize(text_p2)
self.words_all = self.words_p1 + self.words_p2
self.clean_p1 = self.cleanWords(self.words_p1)
self.clean_p2 = self.cleanWords(self.words_p2)
self.clean_all = self.cleanWords(self.words_all)
def cleanWords(self, raw_words):
words_no_punc = []
for word in raw_words:
if word.isalpha():
words_no_punc.append(word.lower())
stopwords_list = stopwords.words("english")
stopwords_list.extend(["said","one","like","came","back", "lol", "haha", "ermm"])
clean_words = []
for word in words_no_punc:
if word not in stopwords_list and len(word) > 3:
clean_words.append(word)
clean_str = " ".join(clean_words)
clean_str = " ".join(w for w in nltk.wordpunct_tokenize(clean_str) if w.lower() in self.words or not w.isalpha())
clean_words = clean_str.split(" ")
return clean_words
def returnCloud(self):
clean_words = self.clean_all
fdist = FreqDist(clean_words)
#fdist.plot(10)
clean_words_string = " ".join(clean_words)
wordcloud = WordCloud(background_color="black").generate(clean_words_string)
wordcloud.to_file(CLOUD_PATH)
return fdist
#plt.figure(figsize = (10, 5))
#plt.plot(wordcloud)
#plt.savefig("./assets/wordcloud.png", transparent=True)
def generateCloud(self, entity="all"):
if entity == "sender":
clean_words = self.clean_p1
elif entity == "receiver":
clean_words = self.clean_p2
else:
clean_words = self.clean_all
print(f"\n\n\n-------------------- NLP {(entity)} --------------------")
print(f"\n Number of words excluding punctuation & stopwords: {len(clean_words)}\n")
print(" *Visual frequency chart of top 10 meaningful words* (close to continue)")
fdist = FreqDist(clean_words)
fdist.plot(10)
clean_words_string = " ".join(clean_words)
wordcloud = WordCloud(background_color="white").generate(clean_words_string)
print(" *Visual word cloud of most meaningful used words* (close to continue)")
plt.figure(figsize = (10, 5))
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
def return_twoTrigrams(self):
finder = nltk.collocations.TrigramCollocationFinder.from_words(self.clean_all)
trigram1, trigram2 = finder.ngram_fd.most_common(2)
return trigram1, trigram2
def basicAnalysis(self, entity="all"):
if entity == "sender":
clean_words = self.words_p1
elif entity == "receiver":
clean_words = self.words_p2
else:
clean_words = self.words_all
print(f"\n\n\n-------------------- Basic {(entity)} --------------------")
print(f"\n Total number of words: {len(clean_words)}\n")
finder = nltk.collocations.TrigramCollocationFinder.from_words(clean_words)
trigram1, trigram2 = finder.ngram_fd.most_common(2)
print(f" 1st common trigram: {' '.join(trigram1[0])} (Count: {trigram1[1]})")
print(f" 2nd common trigram: {' '.join(trigram2[0])} (Count: {trigram2[1]})")
sia = SentimentIntensityAnalyzer()
sentiment = sia.polarity_scores(" ".join(clean_words))
print(f"\n Positivity Score: {sentiment['pos']}")
print(f" Neutrality Score: {sentiment['neu']}")
print(f" Negativity Score: {sentiment['neg']}")