-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
132 lines (103 loc) · 4.29 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""Processes song file.
Artist information is inserted into the 'artists' table. And Song information
is inserted into the 'songs' table.
Args:
cur (psycopg2.cursor): A database cursor
filepath (str): A filepath to a song file
these are essential for creating and accessing database
"""
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""Processes log file.
Time information is inserted into the 'time' table. User information
is upserted into the 'users' table. And Songplay information is
inserted into the 'songplays' table.
Args:
cur (psycopg2.cursor): A database cursor
filepath (str): A filepath to a log file
these are essential for creating and accessing database
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == 'NextSong']
# convert timestamp column to datetime
t = df['ts'] = pd.to_datetime(df['ts'], unit='ms')
t = df.copy()
# insert time data records
time_data = (t.ts, t.ts.dt.hour , t.ts.dt.day , t.ts.dt.dayofweek , t.ts.dt.month , t.ts.dt.year , t.ts.dt.weekday)
column_labels = ['start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday']
stick = dict(zip(column_labels, time_data))
# insert time data records
time = pd.DataFrame(stick)
for i, row in time.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[["userId", "firstName", "lastName", "gender", "level"]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
df['ts'] = pd.to_datetime(df["ts"], unit='ms')
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = [row.ts, row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent]
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
this function is used for process Jason file using data directory path it's used to process both files log/songs
Args:
cur (psycopg2.cursor): A database cursor
conn (psycopg2.connection): A database connection
filepath (str): A filepath of the directory to process
func (function): The function to call for each found file
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
"""
the main script code
used to :
create database and establish connection
process data from files directories
close database connection
"""
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()