-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodulo_sort.py
123 lines (80 loc) · 4.25 KB
/
modulo_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import List
from radix_sort import RadixSort
from sorting_utilities import SortingUtils
class ModuloSort:
"""
Implementation of Modulo Sort for positive integer arrays.
"""
@staticmethod
def sorter(arr: List[int]) -> List[int]:
"""
Applies modulo sort on an array of integers.
Args:
arr (List[int]): The array of integers to be sorted.
Returns:
arr (List[int]): The array of integers, sorted in ascending order.
"""
# Return if the lenght of the array is 0
if len(arr) == 0:
return arr
sorted_arr = []
buckets = {}
# Determine the range of the input array
min_value, max_value = SortingUtils.find_min_and_max(arr)
modulo_range = int(round((max_value - min_value)/len(arr) + 1, 0))
# Find duplicates to be appended after sorting
duplicates_dict = SortingUtils.count_duplicates(arr)
# Distribute input array values into buckets by floor division, keeping the modulo for the sub-buckets
for num in arr:
index = int((num - min_value) // modulo_range)
modulo_val = int((num - min_value) % modulo_range)
# Ensure the index is within the correct range
index = min(index, len(arr) - 1)
# If the index already exists, we assign the num to the corresponding modulo value
if index in buckets:
buckets[index][modulo_val] = num
# Otherwise, we create a new bucket and initialize it as above
else:
buckets[index] = {}
buckets[index][modulo_val] = num
# Identify the upper bound for a bucket index
maximum_bucket = int((max_value - min_value) // modulo_range)
for index in range(0, maximum_bucket + 1):
# Select the bucket to process
current_bucket = buckets.get(index)
if not current_bucket:
continue
# Get the lenght of the current bucket to sort according to size
relative_lenght = len(current_bucket)
if relative_lenght == 1:
# We get the original values associated with the modulo
original_values = list(current_bucket.values())
# We simply append the only value
to_append = original_values[0]
SortingUtils.append_duplicates(duplicates_dict=duplicates_dict, to_append=to_append, sorted_arr=sorted_arr)
elif relative_lenght == 2:
# We get the original values associated with the modulo
original_values = list(current_bucket.values())
# We sort the small array before taking care of the duplicates
sorted_small = SortingUtils.sort_small_array(original_values, length=2)
for to_append in sorted_small:
SortingUtils.append_duplicates(duplicates_dict=duplicates_dict, to_append=to_append,
sorted_arr=sorted_arr)
elif relative_lenght == 3:
# We get the original values associated with the modulo
original_values = list(current_bucket.values())
# We sort the small array before taking care of the duplicates
sorted_small = SortingUtils.sort_small_array(original_values, length=3)
for to_append in sorted_small:
SortingUtils.append_duplicates(duplicates_dict=duplicates_dict, to_append=to_append,
sorted_arr=sorted_arr)
elif relative_lenght > 3:
# We get the modulo values, which are expected to be easier to sort with Radix sort
modulo_values = list(current_bucket.keys())
# We apply Radix sort on the modulo values and append the sorted elements to sorted_arr
new_arr = RadixSort.sorter(modulo_values)
for j in new_arr:
to_append = current_bucket[j]
SortingUtils.append_duplicates(duplicates_dict=duplicates_dict, to_append=to_append,
sorted_arr=sorted_arr)
return sorted_arr