-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy patheval.py
299 lines (255 loc) · 11.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import time
import string
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
import numpy as np
from utils import Averager, TokenLabelConverter
from dataset import hierarchical_dataset, AlignCollate
from models import LevOCRModel
from utils import get_args
from levt import utils as utils_levt
from levt.dictionary import Dictionary
from abinet.utils import CharsetMapper
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def benchmark_all_eval(model, criterion, converter, src_dict, opt):
if opt.fast_acc:
# # To easily compute the total accuracy of our paper.
eval_data_list = ['IC13_857', 'SVT', 'IIIT5k_3000', 'IC15_1811', 'SVTP', 'CUTE80']
else:
# The evaluation datasets, dataset order is same with Table 1 in our paper.
eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']
evaluation_batch_size = opt.batch_size
char_list_accuracy = []
vision_list_accuracy = []
total_forward_time = 0
total_evaluation_data_number = 0
char_total_correct_number = 0
vision_total_correct_number = 0
dashed_line = '-' * 80
print(dashed_line)
for eval_data in eval_data_list:
eval_data_path = os.path.join(opt.eval_data, eval_data)
print(eval_data_path)
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
evaluation_loader = torch.utils.data.DataLoader(
eval_data, batch_size=evaluation_batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_evaluation, pin_memory=True)
_, accuracys, _, _, infer_time, length_of_data, accur_numbers = validation(
model, criterion, evaluation_loader, converter, src_dict, opt)
char_list_accuracy.append(f'{accuracys[0]:0.3f}')
vision_list_accuracy.append(f'{accuracys[1]:0.3f}')
total_forward_time += infer_time
total_evaluation_data_number += len(eval_data)
char_total_correct_number += accur_numbers[0]
vision_total_correct_number += accur_numbers[1]
print(f'levocr_Acc {accuracys[0]:0.3f}\t vision_Acc {accuracys[1]:0.3f}\t')
print(dashed_line)
averaged_forward_time = total_forward_time / total_evaluation_data_number * 1000
char_total_accuracy = round(char_total_correct_number/total_evaluation_data_number*100,3)
vision_total_accuracy = round(vision_total_correct_number/total_evaluation_data_number*100,3)
params_num = sum([np.prod(p.size()) for p in model.parameters()])
evaluation_log = 'accuracy: ' + '\n'
evaluation_log += 'levocr_total_Acc:'+str(char_total_accuracy)+'\t' + 'vision_total_Acc:'+str(vision_total_accuracy)+'\t'+'th:'+str(opt.th)+'\n'
evaluation_log += f'averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.3f}'
print(evaluation_log)
return [char_total_accuracy, vision_total_accuracy]
def validation(model, criterion, evaluation_loader, converter, src_dict, opt):
""" validation or evaluation """
char_n_correct = 0
vision_n_correct = 0
length_of_data = 0
infer_time = 0
valid_loss_avg = Averager()
for i, (image_tensors, labels, _) in enumerate(evaluation_loader):
batch_size = image_tensors.size(0)
length_of_data = length_of_data + batch_size
image = image_tensors.to(device)
# For max length prediction
text, length = converter.encode_vision(labels, batch_max_length=opt.batch_max_length, device=device)
start_time = time.time()
forward_time = time.time() - start_time
out = model.module.vision(image)
pred_logit = out['logits']
features = out['features']
pred_vision = F.log_softmax(pred_logit, dim=-1)
pred_vision_max = pred_vision.max(2)[1]
cost = criterion(pred_vision.contiguous().view(-1, pred_vision.shape[-1]), text.contiguous().view(-1))
vision_preds_size = torch.IntTensor([pred_logit.size(1)] * batch_size)
vision_preds_str = converter.decode(pred_vision_max, vision_preds_size, ignore_spec_char=True)
vision_final_pred, _ = converter.encode_levt(vision_preds_str, src_dict, device=device, batch_max_length=pred_vision.size(1))
img_feature_new = model.module.extract_img_feature(features)
preds = generate(model, vision_final_pred, img_feature_new, batch_size, src_dict.pad(), max_iter=int(opt.max_iter))
char_preds_str = []
for i in range(batch_size):
vision_str = vision_preds_str[i]
target_str = labels[i]
for j, hypo in enumerate(preds[i]):
hypo_tokens, hypo_str, alignment = utils_levt.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=vision_str,
alignment=hypo["alignment"],
align_dict=None,
tgt_dict=src_dict,
remove_bpe=opt.post_process,
extra_symbols_to_ignore={src_dict.eos()}
)
hypo_str = hypo_str.replace(" ", "")
hypo_str = hypo_str.replace(",", "")
char_preds_str.append(hypo_str)
if hypo_str == target_str:
char_n_correct += 1
if vision_str == target_str:
vision_n_correct += 1
infer_time += forward_time
valid_loss_avg.add(cost)
char_accuracy = char_n_correct/float(length_of_data) * 100
vision_accuracy = vision_n_correct/float(length_of_data) * 100
return valid_loss_avg.val(), [char_accuracy, vision_accuracy], char_preds_str, labels, infer_time, length_of_data, [char_n_correct, vision_n_correct]
def generate(
model,
vision_final_pred,
img_feature,
batch_size,
pad,
eos_penalty=0.0,
max_iter=10,
max_ratio=2,
decoding_format=None,
):
bsz = batch_size
prev_decoder_out = model.module.levt.initialize_output_tokens(vision_final_pred)
prev_output_tokens = prev_decoder_out.output_tokens.clone()
sent_idxs = torch.arange(bsz)
finalized = [[] for _ in range(bsz)]
def finalized_preds(step, prev_out_token, prev_out_score, prev_out_attn):
cutoff = prev_out_token.ne(pad)
tokens = prev_out_token[cutoff]
if prev_out_score is None:
scores, score = None, None
else:
scores = prev_out_score[cutoff]
score = scores.mean()
if prev_out_attn is None:
hypo_attn, alignment = None, None
else:
hypo_attn = prev_out_attn[cutoff]
alignment = hypo_attn.max(dim=1)[1]
return {
"steps": step,
"tokens": tokens,
"positional_scores": scores,
"score": score,
"hypo_attn": hypo_attn,
"alignment": alignment,
}
for step in range(max_iter + 1):
decoder_options = {
"eos_penalty": eos_penalty,
"max_ratio": max_ratio,
"decoding_format": decoding_format,
}
prev_decoder_out = prev_decoder_out._replace(
step=step,
max_step=max_iter + 1,
)
decoder_out = model.module.levt.forward_decoder(
prev_decoder_out, img_feature, **decoder_options
)
# for next step
prev_decoder_out = decoder_out._replace(
output_tokens=decoder_out.output_tokens,
output_scores=decoder_out.output_scores,
attn=decoder_out.attn
if (decoder_out.attn is not None and decoder_out.attn.size(0) > 0)
else None,
)
prev_output_tokens = prev_decoder_out.output_tokens.clone()
if step == max_iter: # reach last iteration
# collect finalized sentences
finalized_tokens = decoder_out.output_tokens
finalized_scores = decoder_out.output_scores
finalized_attn = (
None
if (decoder_out.attn is None or decoder_out.attn.size(0) == 0)
else decoder_out.attn
)
for i in range(bsz):
finalized[i] = [
finalized_preds(
step,
finalized_tokens[i],
finalized_scores[i],
None if finalized_attn is None else finalized_attn[i],
)
]
return finalized
def test(opt):
""" model configuration """
charset = CharsetMapper(opt.dataset_charset_path, max_length=opt.batch_max_length)
opt.num_class = charset.num_classes
print('num_class:', opt.num_class)
indices = charset.char_to_label
src_dict = utils_levt.build_dict(indices)
converter = TokenLabelConverter(src_dict.indices)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = LevOCRModel(opt, src_dict)
model = torch.nn.DataParallel(model).to(device)
model = model.to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
# print(model)
""" keep evaluation model and result logs """
os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
""" setup loss """
criterion = torch.nn.CrossEntropyLoss().to(device) # ignore [GO] token = ignore index 0
""" evaluation """
model.eval()
opt.eval = True
with torch.no_grad():
return benchmark_all_eval(model, criterion, converter, src_dict, opt)
if __name__ == '__main__':
opt = get_args(is_train=False)
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
from tabulate import tabulate
if opt.range is not None:
start_range, end_range = sorted([int(e) for e in opt.range.split('-')])
print("eval range: ",start_range,end_range)
if os.path.isdir(opt.model_dir):
result = []
model_list = os.listdir(opt.model_dir)
model_list = [model for model in model_list if model.startswith('iter_')]
model_list = sorted(model_list, key=lambda x: int(x.split('.')[0].split('_')[-1]), reverse=True)
err_list = []
for model in model_list:
if opt.range is not None:
num_epoch = int(str(model).split('_')[1].split('.')[0])
if not (num_epoch>=start_range and num_epoch <=end_range):
continue
opt.saved_model = os.path.join(opt.model_dir, model)
result.append(test(opt)+[opt.saved_model])
print('opt.model_path :', opt.saved_model)
tab_title = ['levocr_acc', 'model']
result = sorted(result, key=lambda x: x[0], reverse=True)
print(tabulate(result, tab_title, numalign='right'))
else:
for th in range(int(opt.th*100), 51, 1):
opt.th = th/100
opt.saved_model = opt.model_dir
test(opt)