-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (41 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from src.cnnClassifier.loggerr import logger
from src.cnnClassifier.pipline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from src.cnnClassifier.pipline.stage_02_prepare_base_model import PrepareBaseModelTrainingPipeline
from src.cnnClassifier.pipline.stage_03_training import ModelTrainingPipeline
from src.cnnClassifier.pipline.stage_04_evaluation import ModelEvaluation
STAGE_NAME = "Data Ingestion"
try:
logger.info(f" <<<< stage {STAGE_NAME} <<<< started")
data_ingestion = DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f" <<<< stage {STAGE_NAME} >>>> completed !")
except Exception as e:
# logger.exception(e)
raise e
STAGE_NAME = "Prepare Base Model"
try:
logger.info(f" <<<< stage {STAGE_NAME} <<<< started")
base_model = PrepareBaseModelTrainingPipeline()
base_model.main()
logger.info(f" <<<< stage {STAGE_NAME} >>>> completed !")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Training"
try:
logger.info(f"<<<< stage {STAGE_NAME} started >>>>")
train = ModelTrainingPipeline()
train.main()
logger.info(f"<<<< stage {STAGE_NAME} completed >>>>")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Evaluation"
try:
logger.info(f"<<<< Stage {STAGE_NAME} started")
evaluate = ModelEvaluation()
evaluate.main()
logger.info(f"<<<< stage {STAGE_NAME} completed >>>>")
except Exception as e:
logger.exception(e)
raise e