-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_embeddings.py
99 lines (74 loc) · 2.73 KB
/
train_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# -*- coding: utf-8 -*-
"""
Created on 15 October 2022
@author: Amin
"""
# Import libraries
import pandas as pd
from Data.data import load_data
from gensim.models import Word2Vec
from gensim.models.callbacks import CallbackAny2Vec
import argparse
from time import strftime, gmtime
import os
import sys
"""
=============================================================================
Train Word2Vec model.
To run:
>>> python train_embeddings.py
=============================================================================
"""
parser = argparse.ArgumentParser(description='Train W2V')
parser.add_argument('--data', type=str, default='Data\W2V_train_2.csv', help='directory of dataframe containing risk factors')
parser.add_argument('--W2V_model', type=str, default="Models\W2V_model_2.model", help='directory to save trained W2V model')
parser.add_argument('--embedding', type=str, default="Models\embedding_2.wordvectors", help='directory to save wordvectors')
parser.add_argument('--min_count', type=float, default=0.0001, help='min count of bigrams (ratio of number of RFs)')
parser.add_argument('--n_jobs', type=int, default=-1, help='Number of processors to process texts')
parser.add_argument('--epochs', type=int, default=50, help='Number of ecpochs to train the model')
args = parser.parse_args()
date = gmtime()
sys.stdout = open(f"W2V_train_log_{strftime('%d%m%y', date)}.txt", "w")
print(args, "\n")
print(f"{strftime('%D %H:%M', gmtime())} | <<< START >>> \n")
print("Loading data ...\n")
# Loading data
data = load_data(args.data, low_bnd=0.08, col='cleaned_txt', index=0)
# Create a list of lowercase strings as training data
train_docs = data['cleaned_txt'].tolist()
def tokenizer(text):
return text.split(" ")
tokenized_sents = [tokenizer(text) for text in train_docs]
print(f"{strftime('%D %H:%M', gmtime())} | Training word2vec embeddings ...\n")
class callback(CallbackAny2Vec):
'''Callback to print loss after each epoch.'''
def __init__(self):
self.epoch = 0
def on_epoch_end(self, model):
loss = model.get_latest_training_loss()
print(f'Loss after epoch {self.epoch}: {loss}')
self.epoch += 1
sys.stdout.flush()
if args.n_jobs == -1:
njobs = os.cpu_count()
else:
njobs = args.njobs
model = Word2Vec(
tokenized_sents,
window=5,
min_count=10,
epochs=args.epochs,
workers=njobs,
vector_size=300,
sg=1,
negative=15,
compute_loss=True,
callbacks=[callback()],
)
print("Saving Word2Vec model and trained embeddings ...\n")
model.save(args.W2V_model)
# Store just the words + their trained embeddings.
word_vectors = model.wv
word_vectors.save(args.embedding)
print(f"{strftime('%D %H:%M', gmtime())} | >>> END <<< \n")
sys.stdout.close()