-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathae_kan_mnist.py
157 lines (124 loc) · 5 KB
/
ae_kan_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from ae_kan_original import Autoencoder
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
import time
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, classification_report, ConfusionMatrixDisplay
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
trainset = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
valset = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform
)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
valloader = DataLoader(valset, batch_size=64, shuffle=False)
size = 784
input_size = 28 * 28
hidden_size = size
bottleneck_size = size
model = Autoencoder(input_size, hidden_size, bottleneck_size)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-3)
criterion = nn.MSELoss()
start_time = time.time()
for epoch in range(10):
model.train()
with tqdm(trainloader) as pbar:
for i, (images, _) in enumerate(pbar):
images = images.view(-1, input_size).to(device)
optimizer.zero_grad()
output = model(images)
loss = criterion(output, images)
loss.backward()
optimizer.step()
pbar.set_postfix(loss=loss.item(), lr=optimizer.param_groups[0]['lr'])
model.eval()
val_loss = 0
with torch.no_grad():
for images, _ in valloader:
images = images.view(-1, input_size).to(device)
output = model(images)
val_loss += criterion(output, images).item()
val_loss /= len(valloader)
print(f"Epoch {epoch + 1}, Val Loss: {val_loss}")
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.8)
scheduler.step()
rec_loss = val_loss
total_training_time = time.time() - start_time
print(f"Total Training Time: {total_training_time:.2f} seconds")
def visualize_reconstructions(model, dataloader, n_images=4):
model.eval()
data_iter = iter(dataloader)
images, _ = next(data_iter)
images = images.view(-1, input_size).to(device)
with torch.no_grad():
bottleneck = model.encoder(images)
reconstructed = model.decoder(bottleneck)
images = images.cpu().view(-1, 1, 28, 28)
bottleneck = bottleneck.cpu().view(-1, bottleneck_size)
reconstructed = reconstructed.cpu().view(-1, 1, 28, 28)
# Plot the images
fig, axes = plt.subplots(n_images, 3, figsize=(12, 4 * n_images))
for i in range(n_images):
# Original
ax = axes[i, 0]
ax.imshow(images[i].squeeze(), cmap='gray')
ax.set_title("Original")
ax.axis("off")
# Bottleneck
ax = axes[i, 1]
ax.imshow(bottleneck[i].view(-1, 1).repeat(1, 3).numpy(), cmap='gray')
ax.set_title("Bottleneck")
ax.axis("off")
# Reconstructed
ax = axes[i, 2]
ax.imshow(reconstructed[i].squeeze(), cmap='gray')
ax.set_title("Reconstructed")
ax.axis("off")
plt.tight_layout()
plt.savefig('kan_mnist_recon.png', dpi = 600)
plt.show()
print("Training set reconstructions:")
visualize_reconstructions(model, trainloader)
print("Validation set reconstructions:")
visualize_reconstructions(model, valloader)
# def evaluate_knn_on_reconstructed_images(model, dataloader):
# model.eval()
# reconstructed_images = []
# labels = []
# with torch.no_grad():
# for images, targets in dataloader:
# images = images.view(-1, input_size).to(device)
# reconstructed = model(images)
# reconstructed = reconstructed.cpu().view(-1, input_size)
# reconstructed_images.append(reconstructed)
# labels.append(targets)
# reconstructed_images = torch.cat(reconstructed_images, dim=0).numpy()
# labels = torch.cat(labels, dim=0).numpy()
# knn = KNeighborsClassifier(n_neighbors=3)
# knn.fit(reconstructed_images, labels)
# predictions = knn.predict(reconstructed_images)
# acc = accuracy_score(labels, predictions)
# f1 = f1_score(labels, predictions, average='weighted')
# cm = confusion_matrix(labels, predictions)
# print("Confusion Matrix:\n", cm)
# print("\nAccuracy: {:.4f}".format(acc))
# print("F1 Score: {:.4f}".format(f1))
# print("\nClassification Report:\n", classification_report(labels, predictions))
# disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=range(10))
# disp.plot(cmap=plt.cm.Blues)
# plt.title('Confusion Matrix')
# plt.savefig('kan_mnist_conmat.png', dpi = 600)
# plt.show()
# print("Evaluating KNN on reconstructed validation images:")
# evaluate_knn_on_reconstructed_images(model, valloader)