-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatures_correlation_pairplots.py
120 lines (96 loc) · 5.21 KB
/
features_correlation_pairplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import matplotlib.pyplot as plt
import numpy as np
import h5py
import pandas as pd
import seaborn as sb
flight_number = '1002' # 1002, 1003, 1004, 1005, 1006, 1007, 'all', 'all_except_1005'
data = pd.read_pickle(f'Data/Dataframe_{flight_number}.pkl')
from sklearn.preprocessing import StandardScaler
scalar = StandardScaler()
data.dropna(inplace = True)
data_n = scalar.fit_transform(data)
mean = data_n.mean(axis = 0)
std = data_n.std(axis = 0)
# input_features = ['flux_c_t','flux_c_z','cur_ac_lo','ins_alt'
# ,'vol_back_n','vol_back_p','vol_acc_n','vol_acc_p'
# ,'ins_lat', 'ins_roll'
# ,'mag_3_c', 'mag_4_c', 'mag_5_c'
# # ,'utm_x','utm_y','utm_z'
# ] # x,y,z are not input features
# output_labels = ['utm_x','utm_y','utm_z']
# data = data.drop(['N','dt','flight'], axis = 1)
# cor_matrix_x = data.corr()['utm_x'].abs().sort_values(ascending=False)
# cor_matrix_y = data.corr()['utm_y'].abs().sort_values(ascending=False)
# cor_matrix_z = data.corr()['utm_z'].abs().sort_values(ascending=False)
# upper_tri = cor_matrix.where(np.triu(np.ones(cor_matrix.shape),k=1).astype(bool))
# df1 = data.drop(data.columns[to_drop], axis=1)
# sb.heatmap(correlation, cmap="Blues", annot=True)
# correlation = correlation.dropna(axis = 1)
# abscorr = correlation.abs()
# a = abscorr.ge(0.5)
xyz = ['utm_x','utm_y','utm_z']
mag = ['mag_3_uc', 'mag_4_uc', 'mag_5_uc']
current = ['cur_ac_hi', 'cur_ac_lo', 'cur_tank', 'cur_flap', 'cur_strb',
'cur_srvo_o', 'cur_srvo_m', 'cur_srvo_i', 'cur_acpwr', 'cur_outpwr', 'cur_bat_1', 'cur_bat_2']
voltage = ['vol_acpwr', 'vol_outpwr', 'vol_bat_1', 'vol_bat_2', 'vol_res_p', 'vol_res_n',
'vol_back_p', 'vol_back_n', 'vol_gyro_1', 'vol_gyro_2', 'vol_acc_p', 'vol_acc_n',
'vol_block', 'vol_back', 'vol_servo', 'vol_cabt', 'vol_fan']
flux = ['flux_a_x', 'flux_a_y', 'flux_a_z', 'flux_a_t',
'flux_b_x', 'flux_b_y', 'flux_b_z', 'flux_b_t',
'flux_c_x', 'flux_c_y', 'flux_c_z', 'flux_c_t',
'flux_d_x', 'flux_d_y', 'flux_d_z', 'flux_d_t']
# selected = ['mag_3_uc', 'mag_4_uc', 'mag_5_uc',
# 'cur_tank',
# 'ins_wander', 'ins_lat', 'ins_lon','ins_alt',
# 'flux_a_t', 'flux_b_t', 'flux_d_t',
# 'vol_back', 'vol_res_n', 'vol_acc_p', 'vol_acc_n']
selected = ['mag_3_uc', 'mag_4_uc', 'mag_5_uc',
'diurnal',
'flux_b_x', 'flux_b_y', 'flux_c_y',
'ins_vw', 'ins_wander',
'ins_lon', 'ins_lat', 'ins_alt',
'static_p','total_p',
'vol_srvo']
ins = ['ins_acc_x', 'ins_acc_y', 'ins_acc_z', 'ins_wander',
'ins_lat', 'ins_lon', 'ins_alt', 'ins_vn', 'ins_vw', 'ins_vu']
new_flight_selected = ['UNCOMPMAG3', 'UNCOMPMAG4', 'UNCOMPMAG5',
'CUR_TANK',
'FLUXA_TOT', 'FLUXB_TOT', 'FLUXD_TOT',
'V_BACK', 'V_RESn', 'V_RESp', 'V_ACCn']
df_current = data.filter(xyz + current, axis = 1)
df_voltage = data.filter(xyz + voltage, axis = 1)
df_mag = data.filter(xyz + mag, axis = 1)
df_flux = data.filter(xyz + flux, axis = 1)
df_ins = data.filter(xyz + ins, axis = 1)
df_selected = data.filter(xyz + selected, axis = 1)
# correlation_mag = df_mag.corr()
# fig, ax = plt.subplots(figsize=(12,12))
# sb.heatmap(correlation_mag, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
# ax.set_title('correlation of magnetic sensors with WGS xyz coordinates', fontsize = 14)
# fig.savefig('Results/correlation_mag.png', dpi = 600)
# correlation_current = df_current.corr()
# fig, ax = plt.subplots(figsize=(12,12))
# sb.heatmap(correlation_current, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
# ax.set_title('correlation of current sensors with WGS xyz coordinates', fontsize = 14)
# fig.savefig('Results/correlation_cur.png', dpi = 600)
# correlation_voltage = df_voltage.corr()
# fig, ax = plt.subplots(figsize=(12,12))
# sb.heatmap(correlation_voltage, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
# ax.set_title('correlation of voltage sensors with WGS xyz coordinates', fontsize = 14)
# fig.savefig('Results/correlation_vol.png', dpi = 600)
# correlation_flux = df_flux.corr()
# fig, ax = plt.subplots(figsize=(12,12))
# sb.heatmap(correlation_flux, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
# ax.set_title('correlation of fluxgate magneto meters with WGS xyz coordinates', fontsize = 14)
# fig.savefig('Results/correlation_flx.png', dpi = 600)
# correlation_ins = df_ins.corr()
# fig, ax = plt.subplots(figsize=(12,12))
# sb.heatmap(correlation_ins, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
# ax.set_title('correlation of INS sensors with WGS xyz coordinates', fontsize = 14)
# fig.savefig('Results/correlation_ins.png', dpi = 600)
correlation_selected = df_selected.corr()
fig, ax = plt.subplots(figsize=(18,13))
sb.heatmap(correlation_selected, cmap='RdBu', annot=True, vmin = -1, vmax = 1, ax = ax)
ax.set_title('Correlation of selected sensors with WGS xyz coordinates\n', fontsize = 24)
ax.tick_params(labelsize = 18)
fig.savefig('Results/correlation_sel.png', dpi = 600)