-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_pretrain_slg.py
153 lines (112 loc) · 4.46 KB
/
lstm_pretrain_slg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import tensorflow as tf
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
flight_number = 1002
data = pd.read_pickle(f'Data/Dataframe_{flight_number}.pkl')
input_features = ['flux_c_t','flux_c_z','cur_ac_lo','ins_alt',
'vol_back_n','vol_back_p','vol_acc_n','vol_acc_p',
'ins_lat', 'ins_roll',
'mag_3_c', 'mag_4_c', 'mag_5_c',
'utm_x','utm_y','utm_z'] # x,y,z are not input features
output_labels = ['slg']
input_dim = len(input_features)
output_dim = len(output_labels)
sequence_length = 5
epochs = 20
path = f'Results/pre_slg_in={input_dim-3}_out={output_dim}_seq={sequence_length}_epoch={epochs}'
if not os.path.exists(path):
os.mkdir(path)
data_out_df = data.loc[:, output_labels]
data_out = data_out_df.to_numpy(dtype = 'float32')
data_in_df = data.loc[:, input_features]
data_in = data_in_df.to_numpy(dtype = 'float32')
# Function to transform the time series data into a sequential format
def create_sequences(data, sequence_length):
x = []
for i in range(len(data) - sequence_length):
x.append(data[i:i + sequence_length,:])
x = np.array(x)
return x
# Create the sequential data
X = create_sequences(data_in, sequence_length)
y = create_sequences(data_out, sequence_length)
# Split data into training, testing, and validation sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=(0))
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=(0))
pos = X[:,:,-3:]
pos_train = X_train[:,:,-3:]
pos_test = X_test[:,:,-3:]
pos_val = X_val[:,:,-3:]
X = X[:,:,:-3]
X_train = X_train[:,:,:-3]
X_test = X_test[:,:,:-3]
X_val = X_val[:,:,:-3]
normalizer = tf.keras.layers.Normalization(axis=-1)
normalizer.adapt(np.array(X_train))
# Define model
model = tf.keras.Sequential([
normalizer,
tf.keras.layers.LSTM(64, input_shape=(sequence_length, input_dim), return_sequences=True),
tf.keras.layers.Dense(64),
tf.keras.layers.Dense(64),
tf.keras.layers.LSTM(64, input_shape=(sequence_length, input_dim), return_sequences=True),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(output_dim)
])
# Compile model
model.compile(optimizer='adam', loss='mae', metrics=['mape'])
# Train model
history = model.fit(X_train, y_train, epochs= epochs, validation_data=(X_val, y_val))
# Plot RMSE per epoch
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('MAE per epoch')
plt.ylabel('MAE')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.savefig(f'{path}/mae.png',dpi = 600)
plt.show()
# Predict on test set
y_pred = model.predict(X_test)
# Calculate error
error = np.zeros((sequence_length, 1))
for i in range(sequence_length):
error[i] = np.mean(abs(y_test[:,i,0] - y_pred[:,i,0]))
# Plot prediction vs real data
plt.plot(y_test[:1000,0,0])
plt.plot(y_pred[:1000,0,0])
plt.title('Prediction vs real data')
plt.ylabel('Value')
plt.xlabel('Time step')
plt.legend(['real', 'prediction'], loc='upper right')
plt.savefig(f'{path}/slg.png',dpi = 600)
plt.show()
model.save(f'{path}/model/trained_model')
model = tf.keras.models.load_model(f'{path}/model/trained_model')
# use the trained model to predict slg
slg_train = model.predict(X_train)
slg_test = model.predict(X_test)
# keep the first prediction
slg_train = slg_train[:,0,:]
slg_test = slg_test[:,0,:]
pos_train = pos_train[:,0,:]
pos_test = pos_test[:,0,:]
slg_train_df = pd.DataFrame(slg_train, columns = ['slg'])
slg_test_df = pd.DataFrame(slg_test, columns = ['slg'])
pos_train_df = pd.DataFrame(pos_train, columns = ['x', 'y', 'z'])
pos_test_df = pd.DataFrame(pos_test, columns = ['x', 'y', 'z'])
# Random Forest
from sklearn import ensemble
for i in range(200):
forest_model = ensemble.RandomForestRegressor(max_depth=(i+1))
forest_model.fit(slg_train_df, pos_train_df)
pos_pred_test = forest_model.predict(slg_test_df)
pos_pred_train = forest_model.predict(slg_train_df)
error_test = pos_pred_test - pos_test
MAE_test = np.mean(np.abs(error_test), axis = 0)
error_train = pos_pred_train - pos_train
MAE_train = np.mean(np.abs(error_train), axis = 0)
print(f'depth = {i+1}, MAE_test = {MAE_test}, MAE_train = {MAE_train}')