-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression_test.py
65 lines (51 loc) · 1.45 KB
/
regression_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# @Time : 2018-04-10 10:20
# @Author : PengZhw
# @FileName: regression_test.py
# @Software: PyCharm
import numpy as np
from scipy.optimize import leastsq
import pylab as pl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 注意用numpy的数组而不是python内建的list
points = [[1.2, 1.2, 4.26], [1.7, 0.2, 4.0], [6.5, 3.0, 14.56], [3.5, 5.0, 13.26]]
x_list = np.array([1.2, 1.7, 6.5, 3.5])
y_list = np.array([1.2, 0.2, 3.0, 5.0])
z_list = np.array([4.26, 4.0, 14.56, 13.26])
def func(x, y, p,):
"""
拟合所用函数:z = ax+by+c
:param x:
:param y:
:param p:
:return:
"""
a, b, c = p
return a*x+b*y+c
def residuals(p, x, y, z):
"""
实验数据x,y,z和拟合函数之间的差,p为拟合需要找到的系数
:param p:
:param z:
:param x:
:param y:
:return:
"""
return z - func(x, y, p)
p0 = [1.3, 1, 1] # 第一次猜测的拟合参数
# 调用leastsq进行数据拟合
# residuals为计算误差的函数
# p0为拟合参数的初始值
# args为需要拟合的实验数据
plsq = leastsq(residuals, p0, args=(x_list, y_list, z_list))
print("拟合参数", plsq[0])
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-2, 4, 0.25)
X, Y = np.meshgrid(X, Y)
Z = plsq[0][0] * X + plsq[0][1] * Y + plsq[0][2]
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha = 0.3)
plt.show()