-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathred_team.py
227 lines (209 loc) · 8.06 KB
/
red_team.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from argparse import ArgumentParser
from collections import defaultdict
from datetime import datetime
import itertools
import random
import os
import torch
from torch.utils.tensorboard import SummaryWriter
import torchdata
from torchtext.datasets import SQuAD1
from tqdm import tqdm
from typing import Optional
from metrics import *
from models import *
def _all_subclasses_mapping(cls):
def _all_subclasses(cls):
return {cls}.union(s for c in cls.__subclasses__() for s in _all_subclasses(c))
return {m.__name__: m for m in _all_subclasses(cls)}
def train(train_iter, full_model, semantic_entropy, num_to_generate, learning_rate, alpha, writer=None):
"""Run training.
"""
def save(log_dir, model):
current_date = datetime.now()
torch.save(model.state_dict(), f'{log_dir}/{current_date.isoformat()}.pt')
optimizer = torch.optim.RMSprop(filter(lambda p: p.requires_grad, full_model.red_team.generator.model.parameters()), lr=learning_rate)
if writer is None:
writer = SummaryWriter()
try:
for i, instance in enumerate(tqdm(train_iter)):
# Zero gradients
optimizer.zero_grad()
# Forward step
context, real_question, answers, _ = instance
question, sequences, lm_lls, red_lls, orig_lls = full_model(context, real_question, answers, num_to_generate)
# Get loss.
entropy = semantic_entropy.compute(sequences, lm_lls).mean()
kl = torch.nn.functional.kl_div(red_lls, orig_lls, log_target=True)
loss = -entropy + alpha * kl
# Backpropagation and update step
loss.backward()
optimizer.step()
# Logging.
writer.add_text('train/GeneratedQuestion', question, i)
writer.add_text('train/RealQuestion', real_question, i)
writer.add_scalar('train/Entropy', entropy.item(), i)
writer.add_scalar('train/KL', kl.item(), i)
writer.add_scalar('train/Loss', loss.item(), i)
writer.flush()
if i % (len(train_iter) // 50) == 0:
save(writer.log_dir, full_model.red_team.generator.model)
finally:
save(writer.log_dir, full_model.red_team.generator.model)
def test(test_iter, full_model, qa_metrics, red_team=True, writer=None):
full_model.eval()
if writer is None:
writer = SummaryWriter()
qa_metric_results = defaultdict(list)
for i, instance in enumerate(tqdm(test_iter)):
# Forward step
context, real_question, answers, _ = instance
question, pred_answers, _, _, _ = full_model(context, real_question, answers, 1, red_team)
pred_answer = pred_answers[0][0]
# Evalute and log metrics.
for metric in qa_metrics:
idx, val = metric.compute(pred_answer, answers)
qa_metric_results[metric].append(val)
writer.add_text(f'test-{red_team}/{metric}-Answer', answers[idx], i)
# Logging.
for qa_metric, vals in qa_metric_results.items():
writer.add_histogram(f'test-{red_team}/{metric}', vals)
writer.add_text(f'test-{red_team}/GeneratedQuestion', question, i)
writer.add_text(f'test-{red_team}/RealQuestion', real_question, i)
writer.add_text(f'test-{red_team}/PredictedAnswer', pred_answer, i)
writer.flush()
def main(
language_model: str,
red_team_model: str,
nli_model: str,
path_to_red_team_model: Optional[str],
alpha: float,
learning_rate: float,
semantic_entropy_m: int,
num_train_instances: Optional[int],
num_dev_instances: Optional[int],
num_test_instances: Optional[int]
) -> None:
"""Train red team model to create prompts which produce uncertain outputs from language model.
"""
# Parse language model classes.
language_model_pt = HFLanguageModel(language_model, False, device=0, max_length=60, torch_dtype=torch.float16)
red_team_model_pt = HFLanguageModel(red_team_model, device=0)
if language_model == red_team_model:
orig_model_pt = language_model_pt
else:
orig_model_pt = HFLanguageModel(red_team_model, False, 0)
# Parse metric classes
nli_model_pt = _all_subclasses_mapping(NLIModel)[nli_model]()
semantic_entropy = SemanticEntropy(nli_model_pt)
# Get data iters.
train_iter = SQuAD1(split='train').header(num_train_instances) if num_train_instances else SQuAD1(split='train')
test_iter = SQuAD1(split='train').header(num_test_instances) if num_test_instances else SQuAD1(split='train')
# Train and evaluate.
full_model = FullPipeline(language_model_pt, red_team_model_pt, orig_model_pt)
# Set up SummaryWriter.
if path_to_red_team_model:
log_dir = os.path.dirname(path_to_red_team_model)
writer = SummaryWriter(log_dir, filename_suffix='test')
else:
logdir = f"lr={learning_rate}_SEm={semantic_entropy_m}_alpha={alpha}_lm={language_model}_red-team={red_team_model}"
writer = SummaryWriter(logdir)
writer.add_hparams({
'learning_rate': learning_rate,
'semantic_entropy_m': semantic_entopy_m,
'alpha': alpha,
'language_model': language_model,
'red_team_model': red_team_model,
'nli_model': nli_model,
'path_to_red_team_model': path_to_red_team_model
})
# Train and evaluate.
if path_to_red_team_model:
full_model.red_team.generator.model.load_state_dict(torch.load(path_to_red_team_model))
else:
train(train_iter, full_model, semantic_entropy, semantic_entropy_m, learning_rate, alpha, writer)
test(test_iter, full_model, [F1(), EM()], True, writer)
test(test_iter, full_model, [F1(), EM()], False, writer)
if __name__ == '__main__':
parser = ArgumentParser(
prog='red_team.py',
description='Trains a red team language model using RL to product prompts which elicit generations from another language model for which that other model is very uncertain'
)
parser.add_argument(
'-lm',
'--language-model',
type=str,
help="Huggingface string for model that is being adversarially attacked by the red team model",
default='vvsotnikov/stablelm-tuned-alpha-3b-16bit',
)
parser.add_argument(
'-rt',
'--red-team-model',
type=str,
help="Huggingface string for red team model",
default='mrm8488/t5-base-finetuned-question-generation-ap',
)
parser.add_argument(
'-nli',
'--nli-model',
type=str,
help="String for NLI model. Possible values: [DebertaMNLIModel]",
default='DebertaMNLIModel'
)
parser.add_argument(
'--path-to-red-team-model',
type=str,
help="Path to saved red team model state dict. If not None, training will be skipped.",
default=None
)
parser.add_argument(
'-lr',
'--learning-rate',
type=float,
help="Learning rate of the model",
default=1e-5
)
parser.add_argument(
'-a',
'--alpha',
type=float,
help="KL penalty factor",
default=1e8#2.5e7
)
parser.add_argument(
'--semantic-entropy-m',
type=int,
help="Number of generations to use for computing semantic entropy",
default=4
)
parser.add_argument(
'--train-dataset-size',
type=int,
help="Number of (context, answer) pairs to use for training",
default=10000,
)
parser.add_argument(
'--dev-dataset-size',
type=int,
help="Number of (context, answer) pairs to use for dev",
default=1200
)
parser.add_argument(
'--test-dataset-size',
type=int,
help="Number of (context, answer) pairs to use for test",
default=1200
)
args = parser.parse_args()
main(
args.language_model,
args.red_team_model,
args.nli_model,
args.path_to_red_team_model,
args.alpha,
args.learning_rate,
args.semantic_entropy_m,
args.train_dataset_size,
args.dev_dataset_size,
args.test_dataset_size
)