Skip to content

Commit 2e02f8e

Browse files
Update README.md
1 parent 1253c3b commit 2e02f8e

File tree

1 file changed

+117
-8
lines changed

1 file changed

+117
-8
lines changed

README.md

Lines changed: 117 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,76 @@
1-
# Integrated framework for fusing radiogenomics and metabolic modelling via deep learning in ovarian cancer
21

3-
This code is part of the repository contains the code and data to reproduce the results presented in the paper: N. Eftekhari, A. Saha, S. Verma, G. Zampieri, S. Sawan, A. Occhipinti, C. Angione, "Fusing imaging and metabolic modelling via multimodal deep learning in ovarian cancer".
2+
# Integrated Framework for Fusing Radiogenomics and Metabolic Modelling via Deep Learning in Ovarian Cancer
43

4+
This repository contains the code and data necessary to reproduce the results presented in the paper:
55

6+
**N. Eftekhari, A. Saha, S. Verma, G. Zampieri, S. Sawan, A. Occhipinti, C. Angione, "Fusing imaging and metabolic modelling via multimodal deep learning in ovarian cancer."**
67

7-
<img style="width: 720px; alignment: center" src="Images/Fig1-pipeline.png">
8+
<img src="Images/Fig1-pipeline.png" alt="Pipeline Image" width="720" style="display: block; margin-left: auto; margin-right: auto;"/>
89

9-
# Installation
10-
*** Clone the Repository
10+
---
11+
12+
## Table of Contents
13+
14+
- [Overview](#overview)
15+
- [Requirements](#requirements)
16+
- [Installation](#installation)
17+
- [Feature Reduction](#feature-reduction)
18+
- [Image Segmentation](#image-segmentation)
19+
- [Metabolic Modelling](#metabolic-modelling)
20+
- [Survival Models](#survival-models)
21+
22+
23+
---
24+
25+
## Overview
26+
27+
This repository includes a Jupyter Notebook, scripts, and data necessary to perform RNA feature extraction and image segmentation for ovarian cancer research. The notebook supports the integration of radiogenomics and metabolic data using deep learning, enabling personalized oncology research.
28+
29+
## Requirements
30+
31+
The repository requires the following Python libraries:
32+
33+
- `numpy`
34+
- `pandas`
35+
- `matplotlib`
36+
- `scikit-learn`
37+
- `nibabel`
38+
- `SimpleITK`
39+
- `tensorflow-gpu==2.1` (or `tensorflow-mkl==2.1` for CPU)
40+
41+
Install these dependencies using the following command:
42+
43+
```bash
44+
pip install -r requirements.txt
45+
```
46+
47+
## Installation
48+
```bash
1149
git clone https://github.com/Angione-Lab/Integrated-framework-for-fusing-radiogenomics-and-metabolic-modelling-via-deep-learning.git
1250
cd Integrated-framework-for-fusing-radiogenomics-and-metabolic-modelling-via-deep-learning
51+
```
1352

14-
*** Install Dependencies
15-
pip install -r requirements.txt
53+
## Feature Reduction
54+
55+
1. **Data Preparation**:
56+
57+
Ensure that your RNA data file is in the required format as specified in the notebook.
58+
Place the data file in the appropriate directory, or update the file path in the notebook accordingly.
59+
60+
2. **Running the Notebook**:
61+
Launch the Jupyter Notebook server and for example open RNA_feature_vector.ipynb
62+
```bash
63+
jupyter notebook RNA_feature_vector.ipynb
64+
65+
```
1666

1767

18-
# Image Segmentation
68+
69+
70+
## Image Segmentation
71+
72+
### Requirements
73+
1974
conda create -n ovarian_unet_py37 python=3.7
2075
conda activate ovarian_unet_py37
2176

@@ -27,3 +82,57 @@ conda install tensorflow-mkl==2.1 (cpu version)
2782
pip install nibabel SimpleItk matplotlib tqdm
2883

2984

85+
Training:
86+
```bash
87+
train/train.py.py
88+
```
89+
90+
Prediction:
91+
```bash
92+
train/ovarian_unet_predict.py
93+
```
94+
95+
96+
## Metabolic Modelling
97+
98+
This code uses a metabolic model and transcriptomic data to set reaction bounds in accordance with gene expression levels. The code loads a predefined metabolic model (`human1.mat`) and adjusts reaction bounds for specific reactions using gene expression profiles.
99+
100+
Key components:
101+
1. **Loading the Model**: `human1.mat` model is loaded.
102+
2. **Setting Bounds**: Bounds for selected reactions are modified based on user-defined gamma and threshold values.
103+
3. **Transcriptomic Data Integration**: Gene expression data for each patient is mapped to the model.
104+
4. **Flux Analysis**: Reaction fluxes are calculated under different threshold and gamma values.
105+
106+
### Requirements
107+
108+
- **MATLAB** (with COBRA Toolbox installed)
109+
- Metabolic model file `human1.mat`
110+
- Gene expression data files: `gene_exp.mat`, `gene_ids.mat`, and `patient_ids.mat`
111+
112+
Ensure the COBRA Toolbox is installed and properly configured.
113+
114+
## Survival Models
115+
The notebook contains steps to load and preprocess data, merge multi-omics datasets, and apply several machine learning algorithms for survival analysis. Key components of the analysis include data normalization, survival model fitting, and model evaluation using concordance index.
116+
117+
118+
### Requirements
119+
120+
- Python 3.x
121+
- NumPy
122+
- Pandas
123+
- Seaborn
124+
- Matplotlib
125+
- Scikit-learn
126+
- scikit-survival
127+
- Lifelines
128+
129+
130+
131+
132+
133+
134+
135+
136+
137+
138+

0 commit comments

Comments
 (0)