-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpermutation_test_resampling.py
44 lines (33 loc) · 1.25 KB
/
permutation_test_resampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""Permutation test."""
##############################################################################
# Problem: Men spend more money compared to woman for christmas gifts
# H0 : Both spend same amount of money
# H1 : Men spend higher amount of money
# Consider significance level as 0.15
# We will use pareto dist. to generate the data as online spending is similar
# to pareto(Few people spend lots of money and most spend little amount)
##############################################################################
import numpy as np
size = 100
alpha = 0.15
men = np.random.pareto(a=5.0, size=size)
women = np.random.pareto(a=4.0, size=size)
# Making an observation
obs = abs(np.percentile(men, 50) - np.percentile(women, 50))
print("Observation: ", obs)
# Test static: abs(men_median - women_median)
combined = np.concatenate((men, women))
n_iters = 1000
test_stats = np.zeros(n_iters)
for i in range(n_iters):
np.random.shuffle(combined)
data1 = combined[:size]
data2 = combined[size:]
test_stats[i] = abs(np.percentile(data1, 50) - np.percentile(data2, 50))
# P(X >= obs | H0)
p_value = np.sum(test_stats >= obs) / n_iters
print("P-value: ", p_value)
if p_value <= alpha:
print("Reject H0")
else:
print("Not enough evidence to reject H0")