-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
91 lines (70 loc) · 2.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import sys
import os
import certifi
ca = certifi.where()
from dotenv import load_dotenv
load_dotenv()
mongo_db_url = os.getenv("MONGODB_URL_KEY")
# print(mongo_db_url)
import pymongo
from src.exception.exception import NetworkSecurityException
from src.logging.logger import logging
from src.pipeline.training_pipeline import TrainingPipeline
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, File, UploadFile,Request
from uvicorn import run as app_run
from fastapi.responses import Response
from starlette.responses import RedirectResponse
import pandas as pd
from src.utils.main_utils.utils import load_object
from src.utils.ml_utils.model.estimator import NetworkModel
client = pymongo.MongoClient(mongo_db_url, tlsCAFile=ca)
from src.constant.training_pipeline import DATA_INGESTION_COLLECTION_NAME
from src.constant.training_pipeline import DATA_INGESTION_DATABASE_NAME
database = client[DATA_INGESTION_DATABASE_NAME]
collection = database[DATA_INGESTION_COLLECTION_NAME]
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
from fastapi.templating import Jinja2Templates
templates = Jinja2Templates(directory="./templates")
@app.get("/", tags=["authentication"])
async def index():
return RedirectResponse(url="/docs")
@app.get("/train")
async def train_route():
try:
train_pipeline=TrainingPipeline()
train_pipeline.run_pipeline()
return Response("Training is successful")
except Exception as e:
raise NetworkSecurityException(e,sys)
@app.post("/predict")
async def predict_route(request: Request,file: UploadFile = File(...)):
try:
df=pd.read_csv(file.file)
#print(df)
preprocesor=load_object("final_model/preprocessing.pkl")
final_model=load_object("final_model/model.pkl")
network_model = NetworkModel(preprocessor=preprocesor,model=final_model)
print(df.iloc[0])
y_pred = network_model.predict(df)
print(y_pred)
df['predicted_column'] = y_pred
print(df['predicted_column'])
#df['predicted_column'].replace(-1, 0)
#return df.to_json()
df.to_csv('prediction_output/output.csv')
table_html = df.to_html(classes='table table-striped')
#print(table_html)
return templates.TemplateResponse("table.html", {"request": request, "table": table_html})
except Exception as e:
raise NetworkSecurityException(e,sys)
if __name__=="__main__":
app_run(app, host="0.0.0.0",port=8000)