forked from pin3da/spectral-clustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
53 lines (42 loc) · 1.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from itertools import cycle, islice
from functools import partial
import matplotlib.pyplot as plt
import numpy
import seaborn
from spectral import utils, affinity, clustering
seaborn.set()
methods = [
(affinity.compute_affinity, 'Basic Affinity'),
(affinity.com_aff_local_scaling, 'Affinity Local Scaling'),
(affinity.automatic_prunning, 'Auto-pruning + LS'),
# (partial(affinity.automatic_prunning, affinity=affinity.compute_affinity), 'Auto-pruning'),
]
# ALL datasets: "be2" "be3" "ch" "dc3" "ds3" "ds4" "ds5" "g4" "happy" "hm" "hm2" "iris" "rollo2" "sp" "tar"
data_sets = ['be3', 'happy', 'hm', 'sp', 'tar']
num_classes = {
'be3': 3,
'happy': 3,
'hm': 2,
'sp': 3,
'tar': 6,
}
H_plot, W_plot = len(data_sets), len(methods)
plt.figure(figsize=(W_plot * 2 + 3, H_plot * 2 + 3,))
plt.subplots_adjust(left=0.1, right=0.98, bottom=0.05, top=0.98, wspace=0.2,
hspace=0.3)
for i in range(W_plot):
for j in range(H_plot):
X = utils.load_dot_mat('data/DB.mat', 'DB/' + data_sets[j])
N = X.shape[0]
K = num_classes.get(data_sets[j], 3)
affinity, name = methods[i]
A = affinity(X)
print("SC on dataset %r with %d clases with method %r" % (data_sets[j], K, name))
Y = clustering.spectral_clustering(A, K)
colors = numpy.array(list(islice(cycle(seaborn.color_palette()), int(max(Y) + 1))))
plt.subplot(H_plot, W_plot, j * W_plot + i + 1)
plt.scatter(X[:, 0], X[:, 1], color=colors[Y], s=6, alpha=0.6)
if j == 0:
plt.title(name)
# plt.show()
plt.savefig('img/uncentered-auto.png')