-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce.py
356 lines (281 loc) · 13.8 KB
/
reduce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import random
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA, KernelPCA
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_openml
from sklearn.manifold import Isomap, LocallyLinearEmbedding
from sklearn.linear_model import LinearRegression
import os
from PIL import Image
from skimage.metrics import structural_similarity as ssim, mean_squared_error
from math import log10, sqrt
from sklearn.metrics import pairwise_distances
['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']
def fetch_faces():
# Load 'olivetti_faces' dataset
faces = fetch_openml("olivetti_faces")
X = np.array(faces.data) # Convert X to a NumPy array
y = faces.target
X = X[20:30]
y = y[:10]
return X
def fetch_101():
categories = os.listdir("101_ObjectCategories")
while True:
category = random.choice(categories)
image_path = os.path.join("101_ObjectCategories", category, random.choice(os.listdir(os.path.join("101_ObjectCategories", category))))
# Load and display the image
image = Image.open(image_path)
X = np.asarray(image)
if len(X.shape) == 2:
ori_shape = X.shape
break
print(X.shape)
X = X.reshape(X.shape[0], -1)
# print(X.shape)
return X, ori_shape
class DimensionalityReduction:
def __init__(self, X, image_shape, method='pca', n_components=2, kernel='poly', n_neighbors=5, distance_metric='minkowski'):
self.X = X
self.image_shape = image_shape
self.method = method
self.n_components = n_components
self.scaler = StandardScaler()
self.X_std = self.scaler.fit_transform(self.X)
self.kpca_kernel = kernel
self.n_neighbors = n_neighbors
self.distance_metric = distance_metric
if self.method == 'pca':
self.X_reconstructed = self.perform_pca()
elif self.method == 'kpca':
self.X_reconstructed = self.perform_kpca()
elif self.method == 'isomap':
self.X_reconstructed = self.perform_isomap()
elif self.method == 'lle':
self.X_reconstructed = self.perform_lle()
else:
raise ValueError(f"Invalid method: {self.method}")
self.X_std_reconstructed = self.scaler.inverse_transform(self.X_reconstructed)
def perform_pca(self):
pca = PCA(n_components=self.n_components)
X_pca = pca.fit_transform(self.X_std)
X_pca_reconstructed = pca.inverse_transform(X_pca)
return X_pca_reconstructed
def perform_kpca(self):
kpca = KernelPCA(n_components=self.n_components, kernel=self.kpca_kernel, gamma=100, fit_inverse_transform=True)
X_kpca = kpca.fit_transform(self.X_std)
X_kpca_reconstructed = kpca.inverse_transform(X_kpca)
return X_kpca_reconstructed
def perform_isomap(self):
isomap = Isomap(n_components=self.n_components, n_neighbors=self.n_neighbors, metric=self.distance_metric)
X_transformed = isomap.fit_transform(self.X_std)
linear_regression = LinearRegression()
linear_regression.fit(X_transformed, self.X_std)
X_reconstructed = linear_regression.predict(X_transformed)
return X_reconstructed
def perform_lle(self):
lle = LocallyLinearEmbedding(n_components=self.n_components)
X_transformed = lle.fit_transform(self.X_std)
linear_regression = LinearRegression()
linear_regression.fit(X_transformed, self.X_std)
X_reconstructed = linear_regression.predict(X_transformed)
return X_reconstructed
def _get_title(self, show_n_components=False):
title = self.method
if self.method == 'kpca':
title += '_' + self.kpca_kernel
if show_n_components:
title += "_" + str(self.n_components)
return title.upper()
def plot_images(self, ax, show_n_components=False):
ax.imshow(self.X_std_reconstructed.reshape(self.image_shape))
ax.set_title(self._get_title(show_n_components=show_n_components))
def save_recon_img(self, file_path, file_name, fmt='jpg'):
img_ndarray = self.X_std_reconstructed.reshape(self.image_shape)
self._save_img(img_ndarray, file_path, file_name,fmt=fmt)
@staticmethod
def _save_img(data, file_path, file_name, fmt='jpg'):
data = data.astype(np.uint8)
img = Image.fromarray(data)
# Save the image
img.save(os.path.join(file_path, file_name + '.' + fmt))
# ! add this after convert this file to R code
def plot_all_kpca_kernels(self):
kernels = ['linear', 'poly', 'rbf', 'cosine']
n_kernels = len(kernels)
fig, axes = plt.subplots(1, n_kernels + 1, figsize=(n_kernels * 3, 3))
# Plot original image
axes[0].imshow(self.X.reshape(self.image_shape))
axes[0].set_title('Original')
# Plot images for all kpca methods
for i, kernel in enumerate(kernels):
dr = DimensionalityReduction(self.X, self.image_shape, method='kpca', kernel=kernel, n_components=self.n_components)
dr.plot_images(axes[i + 1])
plt.tight_layout()
plt.show()
# # ! deprecated
# def plot_all_isomap(self):
# n_neighbors = np.array([2, 3, 4, 5, 6])*3
# len_n_neighbors = len(n_neighbors)
# fig, axes = plt.subplots(1, len_n_neighbors + 1, figsize=(len_n_neighbors * 3, 3))
# # Plot original image
# axes[0].imshow(self.X.reshape(self.image_shape))
# axes[0].set_title('Original')
# # Plot images for all kpca methods
# for i, neighbors in enumerate(n_neighbors):
# dr = DimensionalityReduction(self.X, self.image_shape, method='isomap', n_neighbors=neighbors, n_components=self.n_components)
# dr.plot_images(axes[i + 1])
# plt.tight_layout()
# plt.show()
# ! add this after convert this file to R code
@staticmethod
def plot_kpca_n_components(X, image_shape):
n_components = np.array([1, 2, 4, 8, 12])*10
len_n_components = len(n_components)
fig, axes = plt.subplots(1, len_n_components + 1 + 1, figsize=(len_n_components * 3, 3))
# Plot original image
axes[0].imshow(X.reshape(image_shape))
axes[0].set_title('Original')
DimensionalityReduction._save_img(X, '.', 'Original')
# Plot images for all kpca methods
for i, components in enumerate(n_components):
dr = DimensionalityReduction(X, image_shape, method='pca', n_components=components)
dr.plot_images(axes[i + 1], show_n_components=True)
dr.save_recon_img('.', dr._get_title(show_n_components=True))
dr = DimensionalityReduction(X, image_shape, method='kpca', n_components=10)
dr.plot_images(axes[-1], show_n_components=True)
dr.save_recon_img('.', dr._get_title(show_n_components=True))
plt.tight_layout()
plt.show()
def plot_all_methods(self):
methods = ['pca', 'kpca', 'isomap', 'lle']
n_methods = len(methods)
fig, axes = plt.subplots(1, n_methods + 1, figsize=(n_methods * 3, 3))
# Plot original image
axes[0].imshow(self.X.reshape(self.image_shape))
axes[0].set_title('Original')
# Plot images for all methods
for i, method in enumerate(methods):
dr = DimensionalityReduction(self.X, self.image_shape, method=method, n_components=self.n_components)
dr.plot_images(axes[i + 1])
plt.tight_layout()
plt.show()
def image_metrics(self, X1, X2):
mse = mean_squared_error(X1, X2)
psnr = 20 * log10(255.0 / sqrt(mse))
data_range = X1.max() - X1.min()
ssim_val = ssim(X1, X2, data_range=data_range, multichannel=True)
return mse, psnr, ssim_val
# ! add this after convert this file to R code
def evaluate_kpca_kernels(self):
kernels = ['linear', 'poly', 'rbf', 'cosine']
evaluations = []
# * deprecated because original PCA is identical to KPCA linear
# # original PCA (identical to KPCA linear)
# dr = DimensionalityReduction(self.X, self.image_shape, method='pca', n_components=self.n_components)
# mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
# evaluations.append(('pca', mse, psnr, ssim_val))
# max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
# print(f"{'pca'.upper()} - Max difference between original and reconstructed image: {max_diff}")
for kernel in kernels:
dr = DimensionalityReduction(self.X, self.image_shape, method='kpca', kernel=kernel, n_components=self.n_components)
mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
evaluations.append(('kpca_' + kernel, mse, psnr, ssim_val))
max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
print(f"{('kpca_' + kernel).upper()} - Max difference between original and reconstructed image: {max_diff}")
return evaluations
# # !deprecated
# def evaluate_isomaps(self):
# n_neighbors = np.array([2, 3, 4, 5, 6])*3
# evaluations = []
# for neighbors in n_neighbors:
# dr = DimensionalityReduction(self.X, self.image_shape, method='isomap', n_neighbors=neighbors, n_components=self.n_components)
# mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
# evaluations.append((neighbors, mse, psnr, ssim_val))
# max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
# print(f"{neighbors} - Max difference between original and reconstructed image: {max_diff}")
# return evaluations
# ! add this after convert this file to R code
def evaluate_kpca_n_components(self):
n_components = np.array([1, 2, 4, 8, 12])*10
evaluations = []
for components in n_components:
dr = DimensionalityReduction(self.X, self.image_shape, method='pca', n_components=components)
mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
evaluations.append(('pca_' + str(components), mse, psnr, ssim_val))
max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
print(f"{components} - Max difference between original and reconstructed image: {max_diff}")
dr = DimensionalityReduction(self.X, self.image_shape, method='kpca', n_components=10)
mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
evaluations.append(('kpca_' + str(10), mse, psnr, ssim_val))
max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
print(f"{components} - Max difference between original and reconstructed image: {max_diff}")
return evaluations
def evaluate_methods(self):
methods = ['pca', 'kpca', 'isomap', 'lle']
evaluations = []
for method in methods:
dr = DimensionalityReduction(self.X, self.image_shape, method=method, n_components=self.n_components)
mse, psnr, ssim_val = self.image_metrics(self.X, dr.X_std_reconstructed)
evaluations.append((method, mse, psnr, ssim_val))
max_diff = np.abs(self.X - dr.X_std_reconstructed).max()
print(f"{method.upper()} - Max difference between original and reconstructed image: {max_diff}")
return evaluations
def plot_evaluation_barchart(self, evaluations):
methods = [eval[0] for eval in evaluations]
mse_values = [eval[1] for eval in evaluations]
psnr_values = [eval[2] for eval in evaluations]
ssim_values = [eval[3] for eval in evaluations]
x = np.arange(len(methods))
width = 0.3
fig, ax = plt.subplots()
ax2 = ax.twinx() # Create a second y-axis
rects1 = ax.bar(x - width, mse_values, width, label='MSE')
rects2 = ax.bar(x, psnr_values, width, label='PSNR')
# Plot SSIM values on the second y-axis
rects3 = ax2.bar(x + width, ssim_values, width, label='SSIM', color='g', alpha=0.5)
ax2.set_ylabel('SSIM')
ax.set_ylabel('MSE / PSNR')
ax.set_title('Evaluation metrics for dimensionality reduction methods')
ax.set_xticks(x)
ax.set_xticklabels(methods)
ax.legend(loc='upper left')
ax2.legend(loc='upper right')
def autolabel(rects, axis=ax):
for rect in rects:
height = rect.get_height()
axis.annotate('{}'.format(round(height, 2)),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3),
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
autolabel(rects3, axis=ax2)
fig.tight_layout()
plt.show()
def main():
# Load dataset and perform dimensionality reduction
X, image_shape = fetch_101()
dr = DimensionalityReduction(X, image_shape, n_components=15)
# Plot images for all methods
# dr.plot_all_kpca_kernels()
# dr.plot_evaluation_barchart(dr.evaluate_kpca_kernels())
# dr.plot_all_methods()
# dr.plot_evaluation_barchart(dr.evaluate_methods())
# dr.plot_all_isomap()
# dr.plot_evaluation_barchart(dr.evaluate_isomaps())
DimensionalityReduction.plot_kpca_n_components(X, image_shape)
dr.plot_evaluation_barchart(dr.evaluate_kpca_n_components())
# if __name__ == "__main__":
# main()
if __name__ == "__main__":
while True:
try:
main()
break # Exit the loop if the main function executes successfully
except Exception as e:
print(f"An error occurred: {e}, trying again...")
print("Successfully executed the code block.")
exit(0)