-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathppo2.cpp
262 lines (195 loc) · 9.22 KB
/
ppo2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//
// Created by szymon on 10/07/19.
//
#include <execinfo.h>
#include <csignal>
#include <fstream>
#include <limits>
#include <chrono>
#include <thread>
#include <cmath>
#include "args.hxx"
#include "ppo2/ppo2.hpp"
#include "env/env.hpp"
#include "env/vec_env.hpp"
#include "env/env_mock.hpp"
#include "env/hexapod_env.hpp"
#include "env/env_normalize.hpp"
#include "env/hexapod_closed_loop_env.hpp"
void handle_signal(int sig) {
const int stack_size = 50;
void *array[stack_size];
size_t size;
// get void*'s for all entries on the stack
size = backtrace(array, stack_size);
// print out all the frames to stderr
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, STDERR_FILENO);
exit(1);
}
void playback(Env& env, PPO2& algorithm, bool verbose, const int steps, const int framerate){
const float frameTime = 1000/framerate;
Mat obs{env.reset()};
float episode_reward = 0;
for(int i = 0; i < steps; ++i){
//measure frame duration
auto start = std::chrono::steady_clock::now();
if(verbose) {
std::cout << "obs: " << env.get_original_obs() << std::endl;
}
Mat a = algorithm.eval(obs);
std::vector<Mat> outputs = env.step(a);
obs = std::move(outputs[0]);
float rew = env.get_original_rew()(0,0);
env.render();
if(verbose) {
std::cout << "step reward: " << rew << std::endl;
}
episode_reward+= rew;
if(outputs[2](0,0)>.5 || i==steps-1){
std::cout << "episode reward: " << episode_reward << std::endl;
episode_reward = 0;
}
//sleep if frame was processed too fast for visualization framerate request
auto end = std::chrono::steady_clock::now();
int duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
if(duration<frameTime) {
int x = std::round(frameTime-duration);
std::this_thread::sleep_for(std::chrono::milliseconds(x));
}
}
}
void mkdir(const std::string& path){
std::string mkdir_sys_call {"mkdir -p "+path};
int mkdir_result {system(mkdir_sys_call.c_str())};
if(mkdir_result == -1){
std::cout << "Path creation failed, terminating: " << path << std::endl;
assert(false);
}
}
int main(int argc, char **argv)
{
signal(SIGSEGV, handle_signal);
signal(SIGABRT, handle_signal);
args::ArgumentParser parser("This is a gait learner/viewer program using PPO algorithm", "--END--");
args::HelpFlag help(parser, "help", "Display this help menu", {'h', "help"});
args::ValueFlag<std::string> save_path(parser, "save path", "directory to save all serializations and logs", {'d',"dir"},"./exp/ppo_cpp");
args::ValueFlag<std::string> graph_path(parser, "graph path", "path of computational graph to load", {'g',"graph","graph_path"},""); //,"./exp/ppo_cpp/resources/ppo2_graph.meta.txt");
args::ValueFlag<std::string> load_path(parser, "checkpoint prefix", "serialized model to visualize", {'p',"path"});
args::ValueFlag<std::string> id(parser, "unique id", "outer/global id, necessarily unique or results overrides will happen", {"id"});
args::ValueFlag<float> steps(parser, "steps", "Total number of training steps", {'s',"steps"},2e7);
args::ValueFlag<float> learning_rate(parser, "learning rate", "Adam optimizer's learning rate", {'l',"lr","learning_rate","learningrate"},1e-3);
args::ValueFlag<float> entropy(parser, "entropy", "Entropy to encourage exploration", {'e',"ent","entropy"},0);
args::ValueFlag<float> clip_range(parser, "clip range", "PPO's maximal relative change of policy likelihood", {'c',"cr","clip_range","cliprange"},0.2);
args::ValueFlag<int> num_saves(parser, "num saves", "Number of saves. If not defined max(1 per 1M steps, 1)", {"saves","n_saves","num_saves"});
args::ValueFlag<int> num_epochs(parser, "num epochs", "Number of epochs to train with batch of data.", {"epochs","n_epochs","num_epochs"},10);
args::ValueFlag<int> num_batch_steps(parser, "batch steps per env", "Number of steps taken for each batch for each environment", {"batch_steps","n_steps","num_steps"},2048);
args::ValueFlag<double>reset_noise_scale(parser,"reset noise amplitude", "Maximal amplitude of iid noise added upon reset.",{"reset_noise_scale","reset_noise","rns","rn"},0.1);
args::Flag closed_loop(parser,"closed loop environment", "If set, closed-loop hexapod environment will be used, open-loop by default",{"closed_loop","closed-loop","cl"});
args::Flag verbose(parser,"verbose", "output additional logs to the console",{'v',"verbose"});
args::Flag resume(parser,"resume", "flag signalling resuming",{'r',"resume"});
args::Flag use_bullet(parser,"use_bullet", "Replace default constraint solver with Bullet",{"bullet","use_bullet","bullet_solver"});
args::ValueFlag<double> duration(parser, "duration", "The total duration of played animation [seconds]", {"duration","du"},5.);
args::ValueFlag<int> threads(parser, "num threads", "Number of threads used in training", {'j',"jobs","threads","n_threads","num_threads","nt"},1);
args::ValueFlag<int> framerate(parser, "framerate", "Framerate of visualization, no effect on training", {'f',"framerate", "fps"},60);
//seeding needs fixing
// args::ValueFlag<int> seed(parser, "seed", "Seed. Time-based if not specified.", {"seed"});
try
{
parser.ParseCLI(argc, argv);
}
catch (const args::Help&)
{
std::cout << parser;
return 0;
}
catch (const args::ParseError& e)
{
std::cerr << e.what() << std::endl;
std::cerr << parser;
return 1;
}
catch (const args::ValidationError& e)
{
std::cerr << e.what() << std::endl;
std::cerr << parser;
return 1;
}
//still not deterministic - perhaps TF needs a global seed setter on the graph
// if (seed){
// srand(seed.Get());
// } else {
auto now = std::chrono::high_resolution_clock::now();
auto nanos = std::chrono::duration_cast<std::chrono::nanoseconds>(now.time_since_epoch()).count();
int seed_val = static_cast<int>(nanos % std::numeric_limits<int>::max());
srand(seed_val);
// }
// std::cout << "seed: " << seed << std::endl;
auto seconds = time (nullptr);
std::string run_id {id?id.Get():("ppo_"+std::to_string(seconds))};
std::string tb_path {save_path.Get()+"/tensorboard/"+run_id+"/"};
bool training = !load_path || resume;
// std::cout << "load_path: " << load_path.Get() << std::endl;
// std::cout << "training: " << training << std::endl;
load_and_init_robot2();
std::unique_ptr<Env> wrapped_env;
std::vector<std::shared_ptr<Env>> envs;
bool multi_env = threads.Get()>1;
#ifdef GRAPHIC
if (multi_env){
std::cout << "WARNING: Visuals enabled in a multithreaded mode. Is this intentional?" << std::endl;
}
#endif
if(multi_env){
for (int i =0; i<threads.Get(); ++i){
//TODO: environment selection should be recoverable from serialization as well
if(closed_loop){
envs.push_back(std::make_shared<HexapodClosedLoopEnv>(reset_noise_scale.Get(),!multi_env, use_bullet));
} else {
envs.push_back(std::make_shared<HexapodEnv>(!multi_env, use_bullet));
}
}
wrapped_env = std::make_unique<VecEnv>(envs);
} else {
//TODO: environment selection should be recoverable from serialization as well
if(closed_loop){
wrapped_env = std::make_unique<HexapodClosedLoopEnv>(reset_noise_scale.Get(),!multi_env, use_bullet);
} else {
wrapped_env = std::make_unique<HexapodEnv>(!multi_env, use_bullet);
}
}
EnvNormalize env{std::move(wrapped_env),training};
const std::string final_graph_path{graph_path.Get()};
std::cout << "lr: " << learning_rate.Get() << std::endl;
std::cout << "ent: " << entropy.Get() << std::endl;
std::cout << "cr: " << clip_range.Get() << std::endl;
PPO2 algorithm {final_graph_path,env,
.99,num_batch_steps.Get(),entropy.Get(),learning_rate.Get(),.5,.5,.95,32,num_epochs.Get(),clip_range.Get(),-1,tb_path
};
if(load_path){
algorithm.load(load_path.Get());
}
if(training) {
//shell-dependant timestamped directory creation
mkdir(tb_path);
std::string checkpoint_dir{save_path.Get()+"/checkpoints/"+run_id+"/"};
mkdir(checkpoint_dir);
std::string checkpoint_path{checkpoint_dir+"/" + run_id + ".pkl"};
int int_steps {static_cast<int>(steps.Get())};
int total_saves;
if(num_saves){
total_saves = num_saves.Get();
} else {
//max(1 per million, 1)
total_saves = int_steps>1e6? static_cast<int>(int_steps/1e6):1;
}
std::cout << "steps: " << int_steps << std::endl;
std::cout << "num_saves: " << total_saves << std::endl;
algorithm.learn(int_steps,total_saves,checkpoint_path);
} else {
const int playback_steps = static_cast<int>(duration.Get()/0.015);
playback(env,algorithm,verbose.Get(), playback_steps, framerate.Get());
}
global2::global_robot.reset();
return 0;
}