-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoding.py
executable file
·75 lines (60 loc) · 1.86 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/python3
import numpy as np
class OneHotEncoder():
def __init__(self):
self.unique = dict()
self.fit_called = False
self.row = 2
self.column = 2
def __str__(self):
if self.fit_called:
return "Encoding is: "+str(self.unique)
else:
return "call the fit method to initialize some parameters"
def __encode(self, index, n):
return [0 if i is not index else 1 for i in range(n)]
def fit(self, x):
index = 0
self.fit_called = True
unique_values = set(x)
for value in unique_values:
self.unique[value] = index
index = index + 1
self.row = len(x)
self.column = index
return
def transform(self, x):
encoded = list()
for col in x:
for key in self.unique.keys():
if col == key:
encoded.append(self.__encode(self.unique[key], self.column))
break
return np.array(encoded).reshape(self.row, self.column)
class categorize():
def __init__(self):
self.unique = dict()
self.fit_called = False
self.row = 2
def __str__(self):
if self.fit_called:
return "Encoding is: "+str(self.unique)
else:
return "call the fit method to initialize some parameters"
def fit(self, x):
index = 0
self.fit_called = True
unique_values = set(x)
for value in unique_values:
self.unique[value] = index
index = index + 1
self.row = len(x)
return
def transform(self, x):
encoded = list()
for col in x:
for key in self.unique.keys():
if col == key:
encoded.append(self.unique[key])
break
return np.array(encoded)