-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
360 lines (268 loc) · 11.6 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
FRC: 2023 Game Element Custom Decision
Resources:
https://coral.ai/examples/
https://www.tensorflow.org/lite/examples
Author: Keerthi Kaashyap - 2023
"""
import math
import sys
import time
import numpy as np
import tensorflow as tf
from PIL import Image
import os
import cv2
cap = cv2.VideoCapture(0)
edgetpu = '0' # make it '1' if Coral Accelerator is attached and use model with 'edgetpu' name
# Camera properties
horizontal_mount_offset = 0 # degrees
vertical_mount_offset = 0 # degrees
# Angles
horizontal_FOV = 62.2 # degrees
vertical_FOV = 48.8 # degrees
# Distance (object_width / detected_pixel_width * focal_length)
frame_width = 0.106 # meters (measured relay pixel correspondence / literal width of frame)
frame_height = 0.151 # meters (measured relay pixel correspondence / literal height of frame)
focal_length = 0.5 # 0.125 # meters (calibrated camera specific value)
# Object dimensions (for distance measurement)
cube_diagonal_width = 0.34 # meters (object diagonal width, measured for cube)
cone_diagonal_width = 0.39 # meters (object diagonal width, measured for cone)
cube_min_max_ratio = 1 # ratio of longest side to shortest in standard bounding box (can be used for skew metrics)
cone_min_max_ratio = 1.57 # ratio of longest side to shortest in standard bounding box (can be used for skew metrics)
# Model and Label Files
model_dir = os.path.join('models', 'custom')
model = 'frc2023elements.tflite' # if not using edge tpu
# model = 'frc2023elements_edgetpu.tflite' # if using edge tpu
label = 'frc2023elements_labels.txt'
model_path = os.path.join(model_dir, model)
label_path = os.path.join(model_dir, label)
# -------------------Object Detection--------------------#
def detect_objects(interpreter, image, score_threshold=0.5, top_k=3):
"""Returns list of detected objects"""
# score_threshold: minimal detection threshold (likelihood)
# top_k: detection upper limit
set_input_tensor(interpreter, image)
# interpreter.invoke()
invoke_interpreter(interpreter)
global model_dir
if (model_dir == os.path.join('models', 'pretrained')):
# for pre-trained models
boxes = get_output_tensor(interpreter, 0)
class_ids = get_output_tensor(interpreter, 1)
scores = get_output_tensor(interpreter, 2)
count = int(get_output_tensor(interpreter, 3))
else:
# for custom models made by Model Maker
scores = get_output_tensor(interpreter, 0)
boxes = get_output_tensor(interpreter, 1)
count = int(get_output_tensor(interpreter, 2))
class_ids = get_output_tensor(interpreter, 3)
def get_area(b):
"""Returns the area of a bounding box"""
return abs(b.xmax - b.xmin) * abs(b.ymax - b.ymin) # range: [0, 1]
def get_center(b):
"""Returns the coordinates of the center of a bounding box"""
return Point(
(float(b.xmin) + float(b.xmax)) / 2,
(float(b.ymin) + float(b.ymax)) / 2
) # x_range: [0, 1], y_range: [0, 1]
def get_angles(b):
"""Returns x and y angles (in degrees) of the center of a bounding box"""
p = get_center(b)
px = p[0].real
py = p[1].real
nx = px - 0.5 # normalizing coordinates
ny = 0.5 - py # normalizing coordinates
vpw = 2.0 * np.tan(horizontal_FOV / 2) # visual plane width
vph = 2.0 * np.tan(vertical_FOV / 2) # visual plane height
x = vpw / 2 * nx
y = vph / 2 * ny
ax = np.arctan(x) * 180 / math.pi
ay = np.arctan(y) * 180 / math.pi
return Angles(float(ax + horizontal_mount_offset), float(ay + vertical_mount_offset)) # degrees
def get_distance(id, b):
"""Returns distance to an object based on focal ratios"""
# Can be replaced with depth sensing or fixed locus depth mapping
dpw = math.hypot(b.xmax - b.xmin, b.ymax - b.ymin) * frame_width
x_dist = y_dist = 0
if id == 0: # cone (labels.txt)
x_dist = cone_diagonal_width * focal_length / dpw
else: # cube (labels.txt)
x_dist = cube_diagonal_width * focal_length / dpw
y_dist = x_dist * math.tan(get_angles(b)[0] * math.pi / 180)
return Point(x_dist, y_dist) # meters
def make(i):
"""Makes a named tuple that contains output data for each detected object"""
ymin, xmin, ymax, xmax = boxes[i]
b = BBox(
xmin=np.maximum(0.0, xmin),
ymin=np.maximum(0.0, ymin),
xmax=np.minimum(1.0, xmax),
ymax=np.minimum(1.0, ymax)
)
return Object(
id=int(class_ids[i]),
score=scores[i],
bbox=b,
area=get_area(b),
center=get_center(b),
angles=get_angles(b),
distance=get_distance(
int(class_ids[i]),
b
)
)
return [make(i) for i in range(top_k) if scores[i] >= score_threshold]
# --------------------------------------------------------------------------
import collections
Object = collections.namedtuple('Object', ['id', 'score', 'bbox', 'area', 'center', 'angles', 'distance'])
class BBox(collections.namedtuple('BBox', ['xmin', 'ymin', 'xmax', 'ymax'])):
"""
Bounding box
Represents a rectangle which sides are either vertical or horizontal, parallel
to the x or y axis
"""
__slots__ = ()
class Angles(collections.namedtuple('Angles', ['tx', 'ty'])):
"""
Angles
Represents an ordered pair that points to the absolute angle of the target
"""
__slots__ = ()
class Point(collections.namedtuple('Angles', ['x', 'y'])):
"""
Point
Represents an ordered pair
"""
__slots__ = ()
# --------------------------------------------------------------------------
# Labeling
import re
def load_labels(path):
"""
Loads the labels file
Supports files with or without index numbers
"""
with open(path, 'r', encoding='utf-8') as f:
lines = f.readlines()
labels = {}
for row_number, content in enumerate(lines):
pair = re.split(r'[:\s]+', content.strip(), maxsplit=1)
if len(pair) == 2 and pair[0].strip().isdigit():
labels[int(pair[0])] = pair[1].strip()
else:
labels[row_number] = pair[0].strip()
return labels
# --------------------------------------------------------------------------
# Making Interpreter
import platform
EDGETPU_SHARED_LIB = {
'Linux': 'libedgetpu.so.1',
'Darwin': 'libedgetpu.1.dylib',
'Windows': 'edgetpu.dll'
}[platform.system()]
def make_interpreter(path, edgetpu):
"""
Creates the tflite interpreter based on environment
"""
print(path, edgetpu)
if (edgetpu == '0'):
interpreter = tf.lite.Interpreter(model_path=path)
else:
path, *device = path.split('@')
interpreter = tf.lite.Interpreter(model_path=path, experimental_delegates=[
tf.lite.Interpreter.load_delegate(EDGETPU_SHARED_LIB, {'device': device[0]} if device else {})])
print('Loading Model: {} '.format(path))
return interpreter
# --------------------------------------------------------------------------
def input_image_size(interpreter):
"""Returns input image size as (width, height, channels) tuple"""
_, height, width, channels = interpreter.get_input_details()[0]['shape']
return width, height, channels
def set_input_tensor(interpreter, image):
"""Sets the input tensor"""
image = image.resize((input_image_size(interpreter)[0:2]), resample=Image.NEAREST)
# input_tensor(interpreter)[:, :] = image
tensor_index = interpreter.get_input_details()[0]['index']
input_tensor = interpreter.tensor(tensor_index)()[0]
input_tensor[:, :] = image
def get_output_tensor(interpreter, index):
"""Returns the output tensor at the given index"""
output_details = interpreter.get_output_details()[index]
# print(output_details)
tensor = np.squeeze(interpreter.get_tensor(output_details['index']))
return tensor
def invoke_interpreter(interpreter):
"""Invokes the tf interpreter"""
global inference_time_ms
t1 = time.time()
interpreter.invoke()
inference_time_ms = (time.time() - t1) * 1000
print("****Inference time = ", inference_time_ms)
# --------------------------------------------------------------------------
def overlay_text_detection(objs, labels, cv2_im, fps):
"""Displays bounding box and overlays labels onto detected objects"""
height, width, channels = cv2_im.shape
font = cv2.FONT_HERSHEY_SIMPLEX
for obj in objs:
x0, y0, x1, y1 = list(obj.bbox)
x0, y0, x1, y1 = int(x0 * width), int(y0 * height), int(x1 * width), int(y1 * height)
percent = int(100 * obj.score)
if (percent >= 60):
box_color, text_color, thickness = (0, 255, 0), (0, 0, 0), 2
elif (percent < 60 and percent > 40):
box_color, text_color, thickness = (0, 0, 255), (0, 0, 0), 2
else:
box_color, text_color, thickness = (255, 0, 0), (0, 0, 0), 1
text3 = '{}%; {}'.format(percent, labels.get(obj.id, obj.id))
print(text3)
try:
cv2_im = cv2.rectangle(cv2_im, (x0, y0), (x1, y1), box_color, thickness)
cv2_im = cv2.rectangle(cv2_im, (x0, y1 - 10), (x1, y1 + 10), (255, 255, 255), -1)
cv2_im = cv2.putText(cv2_im, text3, (x0, y1), font, 0.6, text_color, thickness)
except:
# log_error()
pass
global model, inference_time_ms
str1 = "FPS: " + str(fps)
cv2_im = cv2.putText(cv2_im, str1, (width - 180, height - 55), font, 0.7, (255, 0, 0), 2)
str2 = "Inference: " + str(round(inference_time_ms, 1)) + " ms"
cv2_im = cv2.putText(cv2_im, str2, (width - 240, height - 25), font, 0.7, (255, 0, 0), 2)
cv2_im = cv2.rectangle(cv2_im, (0, height - 20), (width, height), (0, 0, 0), -1)
cv2_im = cv2.putText(cv2_im, model, (10, height - 5), font, 0.6, (0, 255, 0), 2)
return cv2_im
# --------------------------------------------------------------------------
def main():
"""Main detection function"""
interpreter = make_interpreter(model_path, edgetpu)
interpreter.allocate_tensors()
if sys.platform == "win32":
labels = load_labels(
'models\\custom\\frc2023element_labels.txt'
) # minor fix for Windows os file pathing
else:
labels = load_labels(
os.path.join(model_dir, label)
)
fps = 1
while True:
start_time = time.time()
ret, frame = cap.read()
if not ret:
break
cv2_im = frame
# cv2_im = cv2.flip(cv2_im, 0) # vertical reflection
# cv2_im = cv2.flip(cv2_im, 1) # horizontal reflection
cv2_im_rgb = cv2.cvtColor(cv2_im, cv2.COLOR_BGR2RGB)
image = Image.fromarray(cv2_im_rgb)
results = detect_objects(interpreter, image)
cv2_im = overlay_text_detection(results, labels, cv2_im, fps) # (comment out to speed up processing)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.imshow('Green Vision Synapse', cv2_im)
elapsed_ms = (time.time() - start_time) * 1000
fps = round(1000 / elapsed_ms, 1)
print("--------fps: ", fps, "---------------")
if __name__ == '__main__':
main()