地址:https://leetcode-cn.com/problems/random-pick-with-weight/
给定一个正整数数组 w ,其中 w[i] 代表下标 i 的权重(下标从 0 开始),请写一个函数 pickIndex ,它可以随机地获取下标 i,选取下标 i 的概率与 w[i] 成正比。
例如,对于 w = [1, 3],挑选下标 0 的概率为 1 / (1 + 3) = 0.25 (即,25%),而选取下标 1 的概率为 3 / (1 + 3) = 0.75(即,75%)。
也就是说,选取下标 i 的概率为 w[i] / sum(w) 。
示例 1:
输入:
["Solution","pickIndex"]
[[[1]],[]]
输出:
[null,0]
解释:
Solution solution = new Solution([1]);
solution.pickIndex(); // 返回 0,因为数组中只有一个元素,所以唯一的选择是返回下标 0。
示例 2:
输入:
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
输出:
[null,1,1,1,1,0]
解释:
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // 返回 1,返回下标 1,返回该下标概率为 3/4 。
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 0,返回下标 0,返回该下标概率为 1/4 。
由于这是一个随机问题,允许多个答案,因此下列输出都可以被认为是正确的:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
诸若此类。
import random
class Solution:
def __init__(self, w: List[int]):
sums = sum(w)
self.w = []
ans = 0
for i in w:
ans += (i/sums)
self.w.append(ans)
self.w[-1] = 1.0
def pickIndex(self) -> int:
probs = random.random()
for i in range(len(self.w)):
if probs <= self.w[i]:
return i
# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()
时间复杂度有点高,虽然只是O(n),但是相对而言计算有点慢
可以使用二分法进行查找
class Solution:
def __init__(self, w: List[int]):
probability = [0] * len(w)
total = sum(w)
cur = 0
for i in range(len(w)):
cur += w[i]
probability[i] = cur / total
self.probability = probability
def pickIndex(self) -> int:
return bisect.bisect_right(self.probability, random.random())
# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()