Skip to content

Latest commit

 

History

History
101 lines (81 loc) · 2.62 KB

leecode528.md

File metadata and controls

101 lines (81 loc) · 2.62 KB

528. 按权重随机选择

地址:https://leetcode-cn.com/problems/random-pick-with-weight/

题目描述

给定一个正整数数组 w ,其中 w[i] 代表下标 i 的权重(下标从 0 开始),请写一个函数 pickIndex ,它可以随机地获取下标 i,选取下标 i 的概率与 w[i] 成正比。

例如,对于 w = [1, 3],挑选下标 0 的概率为 1 / (1 + 3) = 0.25 (即,25%),而选取下标 1 的概率为 3 / (1 + 3) = 0.75(即,75%)。

也就是说,选取下标 i 的概率为 w[i] / sum(w) 。

示例 1:

输入:
["Solution","pickIndex"]
[[[1]],[]]
输出:
[null,0]
解释:
Solution solution = new Solution([1]);
solution.pickIndex(); // 返回 0,因为数组中只有一个元素,所以唯一的选择是返回下标 0。

示例 2:

输入:
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
输出:
[null,1,1,1,1,0]
解释:
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // 返回 1,返回下标 1,返回该下标概率为 3/4 。
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 1
solution.pickIndex(); // 返回 0,返回下标 0,返回该下标概率为 1/4 。

由于这是一个随机问题,允许多个答案,因此下列输出都可以被认为是正确的:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
诸若此类。

我的解法

import random
class Solution:

    def __init__(self, w: List[int]):
        sums = sum(w)
        self.w = []
        ans = 0
        for i in w:
            ans += (i/sums)
            self.w.append(ans)
        self.w[-1] = 1.0
    def pickIndex(self) -> int:
        probs = random.random()
        for i in range(len(self.w)):
            if probs <= self.w[i]:
                return i

# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()

时间复杂度有点高,虽然只是O(n),但是相对而言计算有点慢

参考解法

思路

可以使用二分法进行查找

class Solution:
    def __init__(self, w: List[int]):
        probability = [0] * len(w)
        total = sum(w)
        cur = 0
        for i in range(len(w)):
            cur += w[i]
            probability[i] = cur / total
        self.probability = probability
        
    def pickIndex(self) -> int:
        return bisect.bisect_right(self.probability, random.random())


# Your Solution object will be instantiated and called as such:
# obj = Solution(w)
# param_1 = obj.pickIndex()