-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.py
163 lines (149 loc) · 3.8 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2015, Jean-Baptiste Assouad et Artemis Mucaj
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
from copy import copy
import tree
import matplotlib.pyplot as plt
###################################
# Plot l'erreur moyenne en prediction
def superPlot(Pbdd):
if Pbdd.dimCutVal == -1:
plt.plot(Pbdd.LEM)
else:
superPlot(Pbdd.n1)
superPlot(Pbdd.n2)
pass
pass
# Calcul la liste des valeures medianes du
# vecteur data
def median(data):
listTmp = []
med = []
for i in range(0,len(data[0])):
for x in range(0,len(data)):
listTmp.append(data[x][i])
pass
listTmp.sort()
med.append(listTmp[len(listTmp)/2])
pass
return med
# Moyenne mobile entre les elements de list ainsi que
# x_n sur delay valeures
def moyenneMobile(list,x_n,delay):
moy = x_n
for i in range(1,delay+1):
moy += list[len(list)-i]
pass
moy /= delay + 1
return moy
# Retournes la liste d'erreurs de l'expert associe a l'action
def getTheGoodLE(Pbdd,action):
if Pbdd.dimCutVal == -1:
return Pbdd.LE
else:
#print 'dimCutVal =',Pbdd.dimCutVal,'action =',action##########
if action[Pbdd.dimCutVal] < Pbdd.cutval:
return getTheGoodLE(Pbdd.n1,action)
pass
else:
return getTheGoodLE(Pbdd.n2,action)
pass
pass
pass
# Retournes l'erreure de prediction de l'element i de l'expert
# associe a action
def getTheGoodLEM(Pbdd,i,action):
if Pbdd.dimCutVal == -1:
return Pbdd.LEM[len(Pbdd.LE)-(i+1)]
else:
if action[Pbdd.dimCutVal] < Pbdd.cutval:
return getTheGoodLEM(Pbdd.n1,i,action)
pass
else:
return getTheGoodLEM(Pbdd.n2,i,action)
pass
pass
pass
# Retournes le sous arbre de l'expert correspondant a l'action
def getTheGoodTree(Pbdd,action):
if Pbdd.dimCutVal == -1:
return Pbdd
else:
if action[Pbdd.dimCutVal] < Pbdd.cutval:
return getTheGoodTree(Pbdd.n1,action)
pass
else:
return getTheGoodTree(Pbdd.n2,action)
pass
pass
pass
# Calcul de la variance suivant une dimension en utilisant
# separator pour distinguer deux classes
def variance(data, dimension, separator):
m = 0
m_1 = 0
m_2 = 0
count_1 = 0
count_2 = 0
for x in range(0,len(data)):
m += data[x][dimension]
if data[x][dimension] > separator:
m_1 += data[x][dimension]
count_1 += 1
pass
else:
m_2 += data[x][dimension]
count_2 +=1
pass
if count_1 == 0 or count_2 == 0:
return 100000
pass
m_1/=count_1
m_2/=count_2
m /= len(data)
return (1/2.0)*((m_1 - m)**2 + (m_2 - m)**2)
# Critere C2, retournes la dimension ainsi que la valeure de
# separation des donnees, dimension minimisant la variance
# interclasse (cutvalue = mediane)
def C2_criterion(BDD):
dim = 0
cutValue = 0
var = 100000
medianes = median(BDD.data)
#print 'medianes =',medianes########################
for x in range(0,len(medianes)):
v = variance(BDD.data, x, medianes[x])
if(v < var):
var = v
dim = x
cutValue = medianes[x]
pass
#print 'var =',var,'dim =',dim,'cutValue =',cutValue#####################
return [cutValue, dim]
# Separes la base de donnee en deux selon deux criteres, C1 et C2
def splitBDD(BDD,c1):
if len(BDD.data) > c1-1:
#print type(BDD),type(BDD.cutval),type(BDD.dimCutVal),type(BDD.data),type(BDD.n1),type(BDD.n2),type(BDD.LE),type(BDD.LEM)################
cutVals = C2_criterion(BDD)
BDD.n1 = tree.node(-1,-1,[],None,None,[],[])
BDD.n2 = tree.node(-1,-1,[],None,None,[],[])
for x in range(0,c1-1):
if(BDD.data[x][cutVals[1]] <= cutVals[0]):
BDD.n1.data.append(BDD.data[x])
else:
BDD.n2.data.append(BDD.data[x])
pass
pass
BDD.cutval = cutVals[0]
BDD.dimCutVal = cutVals[1]
BDD.n1.LE = copy(BDD.LE)
BDD.n1.LEM = copy(BDD.LEM)
BDD.n2.LE = copy(BDD.LE)
BDD.n2.LEM = copy(BDD.LEM)
#supp de DATA LE et LEM du pere
BDD.LE = []
BDD.LEM = []
BDD.data = []
else:
pass