-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathreferences.bib
581 lines (543 loc) · 21.8 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
@article{odena2016deconvolution,
author = {Odena, Augustus and Dumoulin, Vincent and Olah, Chris},
title = {Deconvolution and Checkerboard Artifacts},
journal = {Distill},
year = {2016},
url = {http://distill.pub/2016/deconv-checkerboard},
doi = {10.23915/distill.00003}
}
@article{Collobert2017Wav2LetterAE,
title={Wav2Letter: an End-to-End ConvNet-based Speech Recognition System},
author={Ronan Collobert and Christian Puhrsch and Gabriel Synnaeve},
journal={CoRR},
year={2017},
volume={abs/1609.03193}
}
@inproceedings{Deniz2018SegmentationOT,
title={Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks},
author={Cem M. Deniz and Spencer Hallyburton and Arakua Welbeck and Stephen Honig and Kyunghyun Cho and Gregory Chang},
booktitle={Scientific Reports},
year={2018}
}
@article{jain2010,
title = "Machines that learn to segment images: a crucial technology for connectomics",
journal = "Current Opinion in Neurobiology",
volume = "20",
number = "5",
pages = "653 - 666",
year = "2010",
note = "Neuronal and glial cell biology – New technologies",
issn = "0959-4388",
doi = "https://doi.org/10.1016/j.conb.2010.07.004",
url = "http://www.sciencedirect.com/science/article/pii/S0959438810001121",
author = "Viren Jain and H Sebastian Seung and Srinivas C Turaga",
abstract = "Connections between neurons can be found by checking whether synapses exist at points of contact, which in turn are determined by neural shapes. Finding these shapes is a special case of image segmentation, which is laborious for humans and would ideally be performed by computers. New metrics properly quantify the performance of a computer algorithm using its disagreement with ‘true’ segmentations of example images. New machine learning methods search for segmentation algorithms that minimize such metrics. These advances have reduced computer errors dramatically. It should now be faster for a human to correct the remaining errors than to segment an image manually. Further reductions in human effort are expected, and crucial for finding connectomes more complex than that of Caenorhabditis elegans."
}
@article{Esteva2017DermatologistlevelCO,
title={Dermatologist-level classification of skin cancer with deep neural networks},
author={Andre Esteva and Brett Kuprel and Roberto A. Novoa and Justin Ko and Susan M. Swetter and Helen M. Blau and Sebastian Thrun},
journal={Nature},
year={2017},
volume={542},
pages={115-118}
}
@article{braintumor2018,
author = {Albadawy, Ehab and Saha, Ashirbani and Mazurowski, Maciej},
year = {2018},
month = {01},
pages = {},
title = {Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing},
volume = {45},
journal = {Medical Physics},
doi = {10.1002/mp.12752}
}
@InProceedings{unet,
author="Ronneberger, Olaf
and Fischer, Philipp
and Brox, Thomas",
editor="Navab, Nassir
and Hornegger, Joachim
and Wells, William M.
and Frangi, Alejandro F.",
title="U-Net: Convolutional Networks for Biomedical Image Segmentation",
booktitle="Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015",
year="2015",
publisher="Springer International Publishing",
address="Cham",
pages="234--241",
abstract="There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.",
isbn="978-3-319-24574-4"
}
@article{qi2017pointnet,
title={PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation},
author={Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J},
journal={Proc. Computer Vision and Pattern Recognition (CVPR), IEEE},
year={2017}
}
@article{Farabet:2013:LHF:2498740.2498895,
author = {Farabet, Clement and Couprie, Camille and Najman, Laurent and LeCun, Yann},
title = {Learning Hierarchical Features for Scene Labeling},
journal = {IEEE Trans. Pattern Anal. Mach. Intell.},
issue_date = {August 2013},
volume = {35},
number = {8},
month = aug,
year = {2013},
issn = {0162-8828},
pages = {1915--1929},
numpages = {15},
url = {http://dx.doi.org/10.1109/TPAMI.2012.231},
doi = {10.1109/TPAMI.2012.231},
acmid = {2498895},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},
keywords = {Feature extraction,Image segmentation,Labeling,Vectors,Context,Image edge detection,Accuracy,scene parsing,Convolutional networks,deep learning,image segmentation,image classification},
}
@article{DBLP:journals/corr/abs-1301-3572,
author = {Camille Couprie and
Cl{\'{e}}ment Farabet and
Laurent Najman and
Yann LeCun},
title = {Indoor Semantic Segmentation using depth information},
journal = {CoRR},
volume = {abs/1301.3572},
year = {2013},
url = {http://arxiv.org/abs/1301.3572},
archivePrefix = {arXiv},
eprint = {1301.3572},
timestamp = {Mon, 13 Aug 2018 16:48:30 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1301-3572},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{Krizhevsky:2012:ICD:2999134.2999257,
author = {Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E.},
title = {ImageNet Classification with Deep Convolutional Neural Networks},
booktitle = {Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1},
series = {NIPS'12},
year = {2012},
location = {Lake Tahoe, Nevada},
pages = {1097--1105},
numpages = {9},
url = {http://dl.acm.org/citation.cfm?id=2999134.2999257},
acmid = {2999257},
publisher = {Curran Associates Inc.},
address = {USA},
}
@article{DBLP:journals/corr/SimonyanVZ13,
author = {Karen Simonyan and
Andrea Vedaldi and
Andrew Zisserman},
title = {Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps},
journal = {CoRR},
volume = {abs/1312.6034},
year = {2013},
url = {http://arxiv.org/abs/1312.6034},
archivePrefix = {arXiv},
eprint = {1312.6034},
timestamp = {Mon, 13 Aug 2018 16:49:09 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/SimonyanVZ13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/SzegedyLJSRAEVR14,
author = {Christian Szegedy and
Wei Liu and
Yangqing Jia and
Pierre Sermanet and
Scott E. Reed and
Dragomir Anguelov and
Dumitru Erhan and
Vincent Vanhoucke and
Andrew Rabinovich},
title = {Going Deeper with Convolutions},
journal = {CoRR},
volume = {abs/1409.4842},
year = {2014},
url = {http://arxiv.org/abs/1409.4842},
archivePrefix = {arXiv},
eprint = {1409.4842},
timestamp = {Mon, 13 Aug 2018 16:48:52 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/SzegedyLJSRAEVR14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/HeZRS15,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {CoRR},
volume = {abs/1512.03385},
year = {2015},
url = {http://arxiv.org/abs/1512.03385},
archivePrefix = {arXiv},
eprint = {1512.03385},
timestamp = {Mon, 13 Aug 2018 16:46:56 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HeZRS15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/HuangLW16a,
author = {Gao Huang and
Zhuang Liu and
Kilian Q. Weinberger},
title = {Densely Connected Convolutional Networks},
journal = {CoRR},
volume = {abs/1608.06993},
year = {2016},
url = {http://arxiv.org/abs/1608.06993},
archivePrefix = {arXiv},
eprint = {1608.06993},
timestamp = {Mon, 10 Sep 2018 15:49:32 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HuangLW16a},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-1805-00932,
author = {Dhruv Mahajan and
Ross B. Girshick and
Vignesh Ramanathan and
Kaiming He and
Manohar Paluri and
Yixuan Li and
Ashwin Bharambe and
Laurens van der Maaten},
title = {Exploring the Limits of Weakly Supervised Pretraining},
journal = {CoRR},
volume = {abs/1805.00932},
year = {2018},
url = {http://arxiv.org/abs/1805.00932},
archivePrefix = {arXiv},
eprint = {1805.00932},
timestamp = {Mon, 13 Aug 2018 16:46:07 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1805-00932},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{Chopra:2005:LSM:1068507.1068961,
author = {Chopra, Sumit and Hadsell, Raia and LeCun, Yann},
title = {Learning a Similarity Metric Discriminatively, with Application to Face Verification},
booktitle = {Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01},
series = {CVPR '05},
year = {2005},
isbn = {0-7695-2372-2},
pages = {539--546},
numpages = {8},
url = {http://dx.doi.org/10.1109/CVPR.2005.202},
doi = {10.1109/CVPR.2005.202},
acmid = {1068961},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},
}
@inproceedings { hadsell-chopra-lecun-06,
original = "orig/hadsell-chopra-lecun-06.pdf",
author = "Hadsell, Raia and Chopra, Sumit and LeCun, Yann",
title = "Dimensionality Reduction by Learning an Invariant Mapping",
booktitle = "Proc. Computer Vision and Pattern Recognition Conference (CVPR'06)",
publisher = "IEEE Press",
year = 2006,
note = "<a href='http://youtu.be/jcREIboRkn0'>Video</a>"
}
@article{DBLP:journals/corr/GirshickDDM13,
author = {Ross B. Girshick and
Jeff Donahue and
Trevor Darrell and
Jitendra Malik},
title = {Rich feature hierarchies for accurate object detection and semantic
segmentation},
journal = {CoRR},
volume = {abs/1311.2524},
year = {2013},
url = {http://arxiv.org/abs/1311.2524},
archivePrefix = {arXiv},
eprint = {1311.2524},
timestamp = {Mon, 13 Aug 2018 16:48:09 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/GirshickDDM13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/RedmonDGF15,
author = {Joseph Redmon and
Santosh Kumar Divvala and
Ross B. Girshick and
Ali Farhadi},
title = {You Only Look Once: Unified, Real-Time Object Detection},
journal = {CoRR},
volume = {abs/1506.02640},
year = {2015},
url = {http://arxiv.org/abs/1506.02640},
archivePrefix = {arXiv},
eprint = {1506.02640},
timestamp = {Mon, 13 Aug 2018 16:48:08 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/RedmonDGF15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/PinheiroCD15,
author = {Pedro H. O. Pinheiro and
Ronan Collobert and
Piotr Doll{\'{a}}r},
title = {Learning to Segment Object Candidates},
journal = {CoRR},
volume = {abs/1506.06204},
year = {2015},
url = {http://arxiv.org/abs/1506.06204},
archivePrefix = {arXiv},
eprint = {1506.06204},
timestamp = {Mon, 13 Aug 2018 16:49:08 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/PinheiroCD15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/HeGDG17,
author = {Kaiming He and
Georgia Gkioxari and
Piotr Doll{\'{a}}r and
Ross B. Girshick},
title = {Mask {R-CNN}},
journal = {CoRR},
volume = {abs/1703.06870},
year = {2017},
url = {http://arxiv.org/abs/1703.06870},
archivePrefix = {arXiv},
eprint = {1703.06870},
timestamp = {Mon, 13 Aug 2018 16:46:36 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/HeGDG17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-1708-02002,
author = {Tsung{-}Yi Lin and
Priya Goyal and
Ross B. Girshick and
Kaiming He and
Piotr Doll{\'{a}}r},
title = {Focal Loss for Dense Object Detection},
journal = {CoRR},
volume = {abs/1708.02002},
year = {2017},
url = {http://arxiv.org/abs/1708.02002},
archivePrefix = {arXiv},
eprint = {1708.02002},
timestamp = {Mon, 13 Aug 2018 16:46:12 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-02002},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-1809-01995,
author = {Natalia Neverova and
Riza Alp G{\"{u}}ler and
Iasonas Kokkinos},
title = {Dense Pose Transfer},
journal = {CoRR},
volume = {abs/1809.01995},
year = {2018},
url = {http://arxiv.org/abs/1809.01995},
archivePrefix = {arXiv},
eprint = {1809.01995},
timestamp = {Fri, 05 Oct 2018 11:34:52 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1809-01995},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/VaswaniSPUJGKP17,
author = {Ashish Vaswani and
Noam Shazeer and
Niki Parmar and
Jakob Uszkoreit and
Llion Jones and
Aidan N. Gomez and
Lukasz Kaiser and
Illia Polosukhin},
title = {Attention Is All You Need},
journal = {CoRR},
volume = {abs/1706.03762},
year = {2017},
url = {http://arxiv.org/abs/1706.03762},
archivePrefix = {arXiv},
eprint = {1706.03762},
timestamp = {Mon, 13 Aug 2018 16:48:37 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/VaswaniSPUJGKP17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/VinyalsTBE16,
author = {Oriol Vinyals and
Alexander Toshev and
Samy Bengio and
Dumitru Erhan},
title = {Show and Tell: Lessons learned from the 2015 {MSCOCO} Image Captioning
Challenge},
journal = {CoRR},
volume = {abs/1609.06647},
year = {2016},
url = {http://arxiv.org/abs/1609.06647},
archivePrefix = {arXiv},
eprint = {1609.06647},
timestamp = {Mon, 13 Aug 2018 16:48:21 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/VinyalsTBE16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{1211.5063,
Author = {Razvan Pascanu and Tomas Mikolov and Yoshua Bengio},
Title = {On the difficulty of training Recurrent Neural Networks},
Year = {2012},
Eprint = {arXiv:1211.5063},
}
@misc{1406.1078,
Author = {Kyunghyun Cho and Bart van Merrienboer and Caglar Gulcehre and Dzmitry Bahdanau and Fethi Bougares and Holger Schwenk and Yoshua Bengio},
Title = {Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation},
Year = {2014},
Eprint = {arXiv:1406.1078},
}
@article{article-lstm,
author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
year = {1997},
month = {12},
pages = {1735-80},
title = {Long Short-term Memory},
volume = {9},
journal = {Neural computation},
doi = {10.1162/neco.1997.9.8.1735}
}
@inproceedings{gal2016dropout,
title={Dropout as a bayesian approximation: Representing model uncertainty in deep learning},
author={Gal, Yarin and Ghahramani, Zoubin},
booktitle={international conference on machine learning},
pages={1050--1059},
year={2016}
}
@article{DBLP:journals/corr/abs-1902-06705,
author = {Nicholas Carlini and
Anish Athalye and
Nicolas Papernot and
Wieland Brendel and
Jonas Rauber and
Dimitris Tsipras and
Ian J. Goodfellow and
Aleksander Madry and
Alexey Kurakin},
title = {On Evaluating Adversarial Robustness},
journal = {CoRR},
volume = {abs/1902.06705},
year = {2019},
url = {http://arxiv.org/abs/1902.06705},
archivePrefix = {arXiv},
eprint = {1902.06705},
timestamp = {Sat, 02 Mar 2019 00:00:00 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1902-06705},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{glorot2010understanding,
title={Understanding the difficulty of training deep feedforward neural networks},
author={Glorot, Xavier and Bengio, Yoshua},
booktitle={Proceedings of the thirteenth international conference on artificial intelligence and statistics},
pages={249--256},
year={2010}
}
@article{DBLP:journals/corr/ShrivastavaPTSW16,
author = {Ashish Shrivastava and
Tomas Pfister and
Oncel Tuzel and
Josh Susskind and
Wenda Wang and
Russell Webb},
title={Learning from Simulated and Unsupervised Images through Adversarial Training},
journal={CoRR},
volume={abs/1612.07828},
year={2016},
url={http://arxiv.org/abs/1612.07828}
}
@book{Goodfellow-et-al-2016,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year={2016}
}
@book{early_stopping,
author={Prechelt L.},
year={1998},
title={Early Stopping - But When?} ,
booktitle={Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science},
volume={1524},
publisher={Springer, Berlin, Heidelberg}
}
@article{DBLP:journals/corr/IoffeS15,
author = {Sergey Ioffe and
Christian Szegedy},
title = {Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift},
journal = {CoRR},
volume = {abs/1502.03167},
year = {2015},
url = {http://arxiv.org/abs/1502.03167},
archivePrefix = {arXiv},
eprint = {1502.03167},
timestamp = {Mon, 13 Aug 2018 16:47:06 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/IoffeS15},
}
@article{zhao2016energy,
title={Energy-based generative adversarial network},
author={Zhao, Junbo and Mathieu, Michael and LeCun, Yann},
journal={arXiv preprint arXiv:1609.03126},
year={2016}
}
@incollection{nguyen1990truck,
title={The truck backer-upper: An example of self-learning in neural networks},
author={Nguyen, Derrick and Widrow, Bernard},
booktitle={Advanced neural computers},
pages={11--19},
year={1990},
publisher={Elsevier}
}
@article{kavukcuoglu2010fast,
title={Fast inference in sparse coding algorithms with applications to object recognition},
author={Kavukcuoglu, Koray and Ranzato, Marc'Aurelio and LeCun, Yann},
journal={arXiv preprint arXiv:1010.3467},
year={2010}
}
@article{olshausen1997sparse,
title={Sparse coding with an overcomplete basis set: A strategy employed by V1?},
author={Olshausen, Bruno A and Field, David J},
journal={Vision research},
volume={37},
number={23},
pages={3311--3325},
year={1997},
publisher={Elsevier}
}
@inproceedings{gregor2010learning,
title={Learning fast approximations of sparse coding},
author={Gregor, Karol and LeCun, Yann},
booktitle={Proceedings of the 27th International Conference on International Conference on Machine Learning},
pages={399--406},
year={2010},
organization={Omnipress}
}
@inproceedings{denton2014exploiting,
title={Exploiting linear structure within convolutional networks for efficient evaluation},
author={Denton, Emily L and Zaremba, Wojciech and Bruna, Joan and LeCun, Yann and Fergus, Rob},
booktitle={Advances in neural information processing systems},
pages={1269--1277},
year={2014}
}
@inproceedings{lecun1990optimal,
title={Optimal brain damage},
author={LeCun, Yann and Denker, John S and Solla, Sara A},
booktitle={Advances in neural information processing systems},
pages={598--605},
year={1990}
}
@article{lecun1998gradient,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick and others},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={Taipei, Taiwan}
}
@article{han2015deep,
title={Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding},
author={Han, Song and Mao, Huizi and Dally, William J},
journal={arXiv preprint arXiv:1510.00149},
year={2015}
}
@article{iandola2016squeezenet,
title={SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size},
author={Iandola, Forrest N and Han, Song and Moskewicz, Matthew W and Ashraf, Khalid and Dally, William J and Keutzer, Kurt},
journal={arXiv preprint arXiv:1602.07360},
year={2016}
}