Skip to content

Commit 664aee3

Browse files
Working Theano with CUDA7.5 Support at Ubuntu 16.04
1 parent f403c09 commit 664aee3

File tree

1 file changed

+11
-4
lines changed

1 file changed

+11
-4
lines changed

Diff for: test.py

+11-4
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@
102102

103103
"""
104104
Testing function to check whether your computations have been made on CPU or GPU.
105-
If the result is 'Used the cpu' and you want to have it in gpu, do the following:
105+
If the result is 'Used the cpu' and you want to have it in gpu, do the following:
106106
1) install theano:
107107
sudo python3.5 -m pip install Theano
108108
2) download and install the latest cuda:
@@ -111,7 +111,12 @@
111111
http://askubuntu.com/questions/760242/how-can-i-force-16-04-to-add-a-repository-even-if-it-isnt-considered-secure-eno
112112
You may also want to grab the proper NVidia driver, choose it form there:
113113
System Settings > Software & Updates > Additional Drivers.
114-
3)
114+
3) should work, run it with:
115+
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python3.5 test.py
116+
http://deeplearning.net/software/theano/tutorial/using_gpu.html
117+
4) Optionally, you can add cuDNN support from:
118+
https://developer.nvidia.com/cudnn
119+
115120
116121
"""
117122

@@ -120,7 +125,7 @@ def testTheano():
120125
import theano.tensor as T
121126
import numpy
122127
import time
123-
128+
print("Testing Theano library...")
124129
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
125130
iters = 1000
126131

@@ -140,17 +145,19 @@ def testTheano():
140145
print('Used the gpu')
141146

142147
# Perform check:
143-
#testTheano()
148+
testTheano()
144149

145150

146151
# ----------------------
147152
# - network3.py example:
148153
import network3
149154

155+
'''
150156
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
151157
training_data, validation_data, test_data = network3.load_data_shared()
152158
mini_batch_size = 10
153159
net = network3.Network([
154160
FullyConnectedLayer(n_in=784, n_out=100),
155161
SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
156162
net.SGD(training_data, 60, mini_batch_size, 0.1, validation_data, test_data)
163+
'''

0 commit comments

Comments
 (0)