-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
258 lines (226 loc) · 8.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# CUDA_VISIBLE_DEVICES=X python train.py --cuda --outpath ./outputs
import argparse
import os
import numpy as np
import torch
from torch.utils import data
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torchvision.utils as vutils
from torch.autograd import Variable
import torch.nn.functional as F
from critic import NetC
from segmentor import NetS
from dataLoader import Dataset, loader, Dataset_val
# 设定参数
parser = argparse.ArgumentParser(description="Example")
parser.add_argument("--batchSize", type=int, default=36, help="training batch size")
parser.add_argument(
"--niter", type=int, default=10000, help="number of epochs to train for"
)
parser.add_argument(
"--lr", type=float, default=0.002, help="Learning Rate. Default=0.02"
)
parser.add_argument(
"--beta1", type=float, default=0.5, help="beta1 for adam. default=0.5"
)
parser.add_argument(
"--decay", type=float, default=0.5, help="Learning rate decay. default=0.5"
)
parser.add_argument("--cuda", action="store_true", help="using GPU or not")
parser.add_argument(
"--seed", type=int, default=666, help="random seed to use. Default=1111"
)
parser.add_argument(
"--outpath",
default="./outputs",
help="folder to output images and model checkpoints",
)
opt = parser.parse_args()
print(opt)
try:
os.makedirs(opt.outpath)
except OSError:
pass
# 权重初始化
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find("BatchNorm") != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# 定义Dice系数损失
def dice_loss(input, target):
num = input * target
num = torch.sum(num, dim=2)
num = torch.sum(num, dim=2)
den1 = input * input
den1 = torch.sum(den1, dim=2)
den1 = torch.sum(den1, dim=2)
den2 = target * target
den2 = torch.sum(den2, dim=2)
den2 = torch.sum(den2, dim=2)
dice = 2 * (num / (den1 + den2))
dice_total = 1 - 1 * torch.sum(dice) / dice.size(0) # divide by batchsize
return dice_total
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Building model")
NetS = NetS()
print(NetS)
NetC = NetC()
print(NetC)
if cuda:
NetS = NetS().cuda()
NetC = NetC().cuda()
# criterion = criterion.cuda()
# 定义优化器
lr = opt.lr
decay = opt.decay
optimizerG = optim.Adam(NetS.parameters(), lr=lr, betas=(opt.beta1, 0.999))
optimizerD = optim.Adam(NetC.parameters(), lr=lr, betas=(opt.beta1, 0.999))
# 加载数据集
dataloader = loader(Dataset("./"), opt.batchSize)
dataloader_val = loader(Dataset_val("./"), 36)
# 进行训练
max_iou = 0
NetS.train()
if __name__ == "__main__":
for epoch in range(opt.niter):
for i, data in enumerate(dataloader, 1):
# 训练判别网络
NetC.zero_grad()
input, label = Variable(data[0]), Variable(data[1])
if cuda:
input = input.cuda()
target = label.cuda()
target = target.cuda()
output = NetS(input)
output = output.detach()
output_masked = input.clone()
input_mask = input.clone()
# 将原图与mask逐元素相乘,得到只有病灶的图像
for d in range(3):
output_masked[:, d, :, :] = (
input_mask[:, d, :, :].unsqueeze(1) * output
).squeeze(1)
if cuda:
output_masked = output_masked.cuda()
result = NetC(output_masked)
target_masked = input.clone()
for d in range(3):
target_masked[:, d, :, :] = (
input_mask[:, d, :, :].unsqueeze(1) * target
).squeeze(1)
if cuda:
target_masked = target_masked.cuda()
target_D = NetC(target_masked)
loss_D = -torch.mean(torch.square(result - target_D))
loss_D.backward()
optimizerD.step()
# 限制判别网络的参数在[-0.05, 0.05]之间
for p in NetC.parameters():
p.data.clamp_(-0.05, 0.05)
# 训练分割网络
NetS.zero_grad()
output = NetS(input)
output = F.sigmoid(output)
for d in range(3):
output_masked[:, d, :, :] = (
input_mask[:, d, :, :].unsqueeze(1) * output
).squeeze(1)
if cuda:
output_masked = output_masked.cuda()
result = NetC(output_masked)
for d in range(3):
target_masked[:, d, :, :] = (
input_mask[:, d, :, :].unsqueeze(1) * target
).squeeze(1)
if cuda:
target_masked = target_masked.cuda()
target_G = NetC(target_masked)
# 计算损失
loss_dice = dice_loss(output, target)
loss_G = torch.mean(torch.square(result - target_G))
loss_G_joint = torch.mean(torch.square(result - target_G)) + loss_dice
loss_G_joint.backward()
optimizerG.step()
print(
"===> Epoch[{}]({}/{}): Batch Dice: {:.4f}".format(
epoch, i, len(dataloader), 1 - loss_dice.item()
)
)
print(
"===> Epoch[{}]({}/{}): G_Loss: {:.4f}".format(
epoch, i, len(dataloader), loss_G.item()
)
)
print(
"===> Epoch[{}]({}/{}): D_Loss: {:.4f}".format(
epoch, i, len(dataloader), loss_D.item()
)
)
vutils.save_image(data[0], "%s/input.png" % opt.outpath, normalize=True)
vutils.save_image(data[1], "%s/label.png" % opt.outpath, normalize=True)
vutils.save_image(output.data, "%s/result.png" % opt.outpath, normalize=True)
# 进行验证
if epoch % 10 == 0:
NetS.eval()
IoUs, dices = [], []
for i, data in enumerate(dataloader_val, 1):
input, gt = Variable(data[0]), Variable(data[1])
if cuda:
input = input.cuda()
gt = gt.cuda()
pred = NetS(input)
pred[pred < 0.5] = 0
pred[pred >= 0.5] = 1
pred = pred.type(torch.LongTensor)
pred_np = pred.data.cpu().numpy()
gt = gt.data.cpu().numpy()
for x in range(input.size()[0]):
IoU = np.sum(pred_np[x][gt[x] == 1]) / float(
np.sum(pred_np[x])
+ np.sum(gt[x])
- np.sum(pred_np[x][gt[x] == 1])
)
dice = (
np.sum(pred_np[x][gt[x] == 1])
* 2
/ float(np.sum(pred_np[x]) + np.sum(gt[x]))
)
IoUs.append(IoU)
dices.append(dice)
NetS.train()
IoUs = np.array(IoUs, dtype=np.float64)
dices = np.array(dices, dtype=np.float64)
mIoU = np.mean(IoUs, axis=0)
mdice = np.mean(dices, axis=0)
print("mIoU: {:.4f}".format(mIoU))
print("Dice: {:.4f}".format(mdice))
if mIoU > max_iou:
max_iou = mIoU
torch.save(
NetS.state_dict(), "%s/NetS_epoch_%d.pth" % (opt.outpath, epoch)
)
vutils.save_image(data[0], "%s/input_val.png" % opt.outpath, normalize=True)
vutils.save_image(data[1], "%s/label_val.png" % opt.outpath, normalize=True)
vutils.save_image(
pred.data, "%s/result_val.png" % opt.outpath, normalize=True
)
if epoch % 25 == 0:
lr = lr * decay
k = k * 0.3
if lr <= 0.00000001:
lr = 0.00000001
print("Learning Rate: {:.6f}".format(lr))
# print('K: {:.4f}'.format(k))
print("Max mIoU: {:.4f}".format(max_iou))
optimizerG = optim.Adam(NetS.parameters(), lr=lr, betas=(opt.beta1, 0.999))
optimizerD = optim.Adam(NetC.parameters(), lr=lr, betas=(opt.beta1, 0.999))