-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
39 lines (27 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pickle
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
st.title('Mall Customers Segmentation Prediction')
annualIncome=st.text_input('Annual Income')
spendingScore = st.text_input('Spending Score')
pickled_model = pickle.load(open('model.pkl', 'rb'))
if st.button('Predict'):
result=pickled_model.predict([[float(annualIncome),float(spendingScore)]])
st.write("This Customer belongs to cluster no: ", result[0])
if result[0] == 0:
st.write("Customers with medium annual income and medium annual spend")
elif result[0]==1:
st.write("Customers with high annual income but low annual spend")
elif result[0]==2:
st.write("Customers with low annual income and low annual spend")
elif result[0]==3:
st.write("Customers low annual income but high annual spend")
elif result[0]==4:
st.write("Customers with high annual income and high annual spend")
# else:
# st.write('Error in giving data...please give the correct data!')
image = Image.open('me.jpeg')
st.sidebar.image(image, caption='Sunrise by the mountains')
st.sidebar.write('Project Author: Avijit Chowdhury(CUET)')