|
2 | 2 |
|
3 | 3 | import unittest
|
4 | 4 |
|
5 |
| -import numpy |
| 5 | +import numpy as np |
6 | 6 | from numpy.testing import assert_array_almost_equal
|
7 | 7 |
|
8 | 8 | from axelrod.eigen import _normalise, principal_eigenvector
|
9 | 9 |
|
10 | 10 |
|
11 |
| - |
12 | 11 | class FunctionCases(unittest.TestCase):
|
13 | 12 | def test_identity_matrices(self):
|
14 | 13 | for size in range(2, 6):
|
15 |
| - mat = numpy.identity(size) |
| 14 | + mat = np.identity(size) |
16 | 15 | evector, evalue = principal_eigenvector(mat)
|
17 | 16 | self.assertAlmostEqual(evalue, 1)
|
18 |
| - assert_array_almost_equal(evector, _normalise(numpy.ones(size))) |
| 17 | + assert_array_almost_equal(evector, _normalise(np.ones(size))) |
19 | 18 |
|
20 | 19 | def test_zero_matrix(self):
|
21 |
| - mat = numpy.array([[0, 0], [0, 0]]) |
| 20 | + mat = np.array([[0, 0], [0, 0]]) |
22 | 21 | evector, evalue = principal_eigenvector(mat)
|
23 |
| - self.assertTrue(numpy.isnan(evalue)) |
24 |
| - self.assertTrue(numpy.isnan(evector[0])) |
25 |
| - self.assertTrue(numpy.isnan(evector[1])) |
| 22 | + self.assertTrue(np.isnan(evalue)) |
| 23 | + self.assertTrue(np.isnan(evector[0])) |
| 24 | + self.assertTrue(np.isnan(evector[1])) |
26 | 25 |
|
27 | 26 | def test_2x2_matrix(self):
|
28 |
| - mat = numpy.array([[2, 1], [1, 2]]) |
| 27 | + mat = np.array([[2, 1], [1, 2]]) |
29 | 28 | evector, evalue = principal_eigenvector(mat)
|
30 | 29 | self.assertAlmostEqual(evalue, 3)
|
31 |
| - assert_array_almost_equal(evector, numpy.dot(mat, evector) / evalue) |
32 |
| - assert_array_almost_equal(evector, _normalise(numpy.array([1, 1]))) |
| 30 | + assert_array_almost_equal(evector, np.dot(mat, evector) / evalue) |
| 31 | + assert_array_almost_equal(evector, _normalise(np.array([1, 1]))) |
33 | 32 |
|
34 | 33 | def test_3x3_matrix(self):
|
35 |
| - mat = numpy.array([[1, 2, 0], [-2, 1, 2], [1, 3, 1]]) |
| 34 | + mat = np.array([[1, 2, 0], [-2, 1, 2], [1, 3, 1]]) |
36 | 35 | evector, evalue = principal_eigenvector(
|
37 | 36 | mat, maximum_iterations=None, max_error=1e-10
|
38 | 37 | )
|
39 | 38 | self.assertAlmostEqual(evalue, 3)
|
40 |
| - assert_array_almost_equal(evector, numpy.dot(mat, evector) / evalue) |
41 |
| - assert_array_almost_equal(evector, _normalise(numpy.array([0.5, 0.5, 1]))) |
| 39 | + assert_array_almost_equal(evector, np.dot(mat, evector) / evalue) |
| 40 | + assert_array_almost_equal(evector, _normalise(np.array([0.5, 0.5, 1]))) |
42 | 41 |
|
43 | 42 | def test_4x4_matrix(self):
|
44 |
| - mat = numpy.array([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) |
| 43 | + mat = np.array([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) |
45 | 44 | evector, evalue = principal_eigenvector(
|
46 | 45 | mat, maximum_iterations=None, max_error=1e-10
|
47 | 46 | )
|
48 | 47 | self.assertAlmostEqual(evalue, 3, places=3)
|
49 |
| - assert_array_almost_equal(evector, numpy.dot(mat, evector) / evalue) |
| 48 | + assert_array_almost_equal(evector, np.dot(mat, evector) / evalue) |
50 | 49 | assert_array_almost_equal(
|
51 |
| - evector, _normalise(numpy.array([0, 0, 0, 1])), decimal=4 |
| 50 | + evector, _normalise(np.array([0, 0, 0, 1])), decimal=4 |
52 | 51 | )
|
0 commit comments