-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsift_gpu_gdal.cpp
537 lines (447 loc) · 19.4 KB
/
sift_gpu_gdal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* gdal_image.cpp -- Load GIS data into OpenCV Containers*/
/* using the Geospatial Data Abstraction Library*/
//*******************************************************//
//Credit for the GDAL
#include <iostream>
#include <cmath>
#include <iomanip>
// OpenCV Headers
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <fstream>
#include "cudaImage.h"
#include "cudaSift.h"
#include <vector>
#include <stdlib.h> // for strtol
#include <string>
using std::string;
#include <stdexcept>
using namespace std;
int ImproveHomography(SiftData &data, float *homography, int numLoops, float minScore, float maxAmbiguity, float thresh);
void PrintMatchData(SiftData &siftData1, SiftData &siftData2, CudaImage &img, const string& s, const string& s2);
void MatchAll(SiftData &siftData1, SiftData &siftData2, float *homography);
double ScaleUp(CudaImage &res, CudaImage &src);
// define the corner points
// Note that GDAL library can natively determine this
// We get this for every GeoTIFF image using $gdalinfo command
// It is different for every image
cv::Point2d tl( -122.441017, 37.815664 );
cv::Point2d tr( -122.370919, 37.815311 );
cv::Point2d bl( -122.441533, 37.747167 );
cv::Point2d br( -122.3715, 37.746814 );
// determine dem corners
cv::Point2d dem_bl( -122.0, 38);
cv::Point2d dem_tr( -123.0, 37);
// range of the heat map colors
std::vector<std::pair<cv::Vec3b,double> > color_range;
// List of all function prototypes
cv::Point2d lerp( const cv::Point2d&, const cv::Point2d&, const double& );
cv::Vec3b get_dem_color( const double& );
cv::Point2d world2dem( const cv::Point2d&, const cv::Size&);
cv::Point2d pixel2world( const int&, const int&, const cv::Size& );
void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r );
/*
* Linear Interpolation
* p1 - Point 1
* p2 - Point 2
* t - Ratio from Point 1 to Point 2
*/
cv::Point2d lerp( cv::Point2d const& p1, cv::Point2d const& p2, const double& t ){
return cv::Point2d( ((1-t)*p1.x) + (t*p2.x),
((1-t)*p1.y) + (t*p2.y));
}
/*
* Interpolate Colors
*/
template <typename DATATYPE, int N>
cv::Vec<DATATYPE,N> lerp( cv::Vec<DATATYPE,N> const& minColor,
cv::Vec<DATATYPE,N> const& maxColor,
double const& t ){
cv::Vec<DATATYPE,N> output;
for( int i=0; i<N; i++ ){
output[i] = (uchar)(((1-t)*minColor[i]) + (t * maxColor[i]));
}
return output;
}
/*
* Compute the dem color
*/
cv::Vec3b get_dem_color( const double& elevation ){
// if the elevation is below the minimum, return the minimum
if( elevation < color_range[0].second ){
return color_range[0].first;
}
// if the elevation is above the maximum, return the maximum
if( elevation > color_range.back().second ){
return color_range.back().first;
}
// otherwise, find the proper starting index
int idx=0;
double t = 0;
for( int x=0; x<(int)(color_range.size()-1); x++ ){
// if the current elevation is below the next item, then use the current
// two colors as our range
if( elevation < color_range[x+1].second ){
idx=x;
t = (color_range[x+1].second - elevation)/
(color_range[x+1].second - color_range[x].second);
break;
}
}
// interpolate the color
return lerp( color_range[idx].first, color_range[idx+1].first, t);
}
/*
* Given a pixel coordinate and the size of the input image, compute the pixel location
* on the DEM image.
*/
cv::Point2d world2dem( cv::Point2d const& coordinate, const cv::Size& dem_size ){
// relate this to the dem points
// ASSUMING THAT DEM DATA IS ORTHORECTIFIED
double demRatioX = ((dem_tr.x - coordinate.x)/(dem_tr.x - dem_bl.x));
double demRatioY = 1-((dem_tr.y - coordinate.y)/(dem_tr.y - dem_bl.y));
cv::Point2d output;
output.x = demRatioX * dem_size.width;
output.y = demRatioY * dem_size.height;
return output;
}
/*
* Convert a pixel coordinate to world coordinates
*/
cv::Point2d pixel2world( const int& x, const int& y, const cv::Size& size ){
// compute the ratio of the pixel location to its dimension
double rx = (double)x / size.width;
double ry = (double)y / size.height;
// compute LERP of each coordinate
cv::Point2d rightSide = lerp(tr, br, ry);
cv::Point2d leftSide = lerp(tl, bl, ry);
// compute the actual Lat/Lon coordinate of the interpolated coordinate
return lerp( leftSide, rightSide, rx );
}
/*
* Add color to a specific pixel color value
*/
void add_color( cv::Vec3b& pix, const uchar& b, const uchar& g, const uchar& r ){
if( pix[0] + b < 255 && pix[0] + b >= 0 ){ pix[0] += b; }
if( pix[1] + g < 255 && pix[1] + g >= 0 ){ pix[1] += g; }
if( pix[2] + r < 255 && pix[2] + r >= 0 ){ pix[2] += r; }
}
/*
* Main Function
*/
int main( int argc, char* argv[] ){
int devNum = 2, imgSet = 0;
if( argc != 11)
{
std::cout <<"Usage :";
std::cout <<"./cudaSift img1 x1 y1 x2 y2 img2 x1 y1 x2 y2 " << std::endl;
std::cout <<" img1 : The source image to be matched! " << std::endl;
std::cout <<" img2 : The target image to be matched! " << std::endl;
std::cout <<" x1,y1,x2,y2 are the coordinates of the tile! " << std::endl;
return -1;
}
// load the image (note that we don't have the projection information. You will
// need to load that yourself or use the full GDAL driver. The values are pre-defined
// at the top of this file
//![load1]
cv::Mat src_limg = (cv::imread(argv[1],0) cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR );
cv::Mat trg_rimg = (cv::imread(argv[6],0) cv::IMREAD_LOAD_GDAL | cv::IMREAD_COLOR );
//check for valid GEOTIFF input
if(! src_limg.data || ! trg_rimg.data)
{
std::cout << "Could not open or find the image" << std::endl ;
return -1;
}
else
{
std::cout << "GEOTIFF image1 detected " <<argv[1]<<std::endl;
std::cout << "GEOTIFF image2 detected " <<argv[6]<<std::endl;
}
// create our output products
cv::Mat output_dem1(src_limg.size(), CV_8UC3 );
cv::Mat output_dem2(trg_rimg.size(), CV_8UC3 );
// for sanity sake, make sure GDAL Loads it as a signed short
if( (dem1.type() or dem2.type()) != CV_16SC1 ){ throw std::runtime_error("DEM image type must be CV_16SC1"); }
// define the color range to create our output DEM heat map
// Pair format ( Color, elevation ); Push from low to high
// Note: This would be perfect for a configuration file, but is here for a working demo.
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 188, 154, 46), -1));
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 110, 220, 110), 0.25));
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 150, 250, 230), 20));
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 160, 220, 200), 75));
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 220, 190, 170), 100));
color_range.push_back( std::pair<cv::Vec3b,double>(cv::Vec3b( 250, 180, 140), 200));
// define a minimum elevation
double minElevation = -10;
// iterate over each pixel in the source src_limg, computing the dem point
for( int y=0; y<src_limg.rows; y++ ){
for( int x=0; x<src_limg.cols; x++ ){
// convert the pixel coordinate to lat/lon coordinates
cv::Point2d coordinate = pixel2world( x, y, src_limg.size() );
// compute the dem src_limg pixel coordinate from lat/lon
cv::Point2d dem_coordinate = world2dem( coordinate, dem.size() );
// extract the elevation
double dz;
if( dem_coordinate.x >= 0 && dem_coordinate.y >= 0 &&
dem_coordinate.x < dem.cols && dem_coordinate.y < dem.rows ){
dz = dem.at<short>(dem_coordinate);
}else{
dz = minElevation;
}
// write the pixel value to the file
output_dem_flood.at<cv::Vec3b>(y,x) = src_limg.at<cv::Vec3b>(y,x);
// compute the color for the heat map output
cv::Vec3b actualColor = get_dem_color(dz);
output_dem.at<cv::Vec3b>(y,x) = actualColor;
// show effect of a 10 meter increase in ocean levels
if( dz < 10 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 90, 0, 0 );
}
// show effect of a 50 meter increase in ocean levels
else if( dz < 50 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 90, 0 );
}
// show effect of a 100 meter increase in ocean levels
else if( dz < 100 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 0, 90 );
}
}}
// iterate over each pixel in the target trg_rimg, computing the dem point
for( int y=0; y<trg_rimg.rows; y++ ){
for( int x=0; x<trg_rimg.cols; x++ ){
// convert the pixel coordinate to lat/lon coordinates
cv::Point2d coordinate = pixel2world( x, y, trg_rimg.size() );
// compute the dem trg_rimg pixel coordinate from lat/lon
cv::Point2d dem_coordinate = world2dem( coordinate, dem.size() );
// extract the elevation
double dz;
if( dem_coordinate.x >= 0 && dem_coordinate.y >= 0 &&
dem_coordinate.x < dem.cols && dem_coordinate.y < dem.rows ){
dz = dem.at<short>(dem_coordinate);
}else{
dz = minElevation;
}
// write the pixel value to the file
output_dem_flood.at<cv::Vec3b>(y,x) = trg_rimg.at<cv::Vec3b>(y,x);
// compute the color for the heat map output
cv::Vec3b actualColor = get_dem_color(dz);
output_dem.at<cv::Vec3b>(y,x) = actualColor;
// show effect of a 10 meter increase in ocean levels
if( dz < 10 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 90, 0, 0 );
}
// show effect of a 50 meter increase in ocean levels
else if( dz < 50 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 90, 0 );
}
// show effect of a 100 meter increase in ocean levels
else if( dz < 100 ){
add_color( output_dem_flood.at<cv::Vec3b>(y,x), 0, 0, 90 );
}
}}
//Tiling Method @aymenalsaadi :)
int src_x1= strtol(argv[2],NULL, 10);
int src_y1= strtol(argv[3],NULL, 10);
int src_x2= strtol(argv[4],NULL, 10);
int src_y2= strtol(argv[5],NULL, 10);
int trg_x1= strtol(argv[7],NULL, 10);
int trg_y1= strtol(argv[8],NULL, 10);
int trg_x2= strtol(argv[9],NULL, 10);
int trg_y2= strtol(argv[10],NULL,10);
cv::Mat limg = cv::Mat(src_limg, cv::Rect(src_x1,src_y1,src_x2,src_y2));
cv::Mat rimg = cv::Mat(trg_rimg, cv::Rect(trg_x1,trg_y1,trg_x2,trg_y2));
unsigned int w = limg.cols;
unsigned int h = limg.rows;
unsigned int w2 = rimg.cols;
unsigned int h2 = rimg.rows;
std::string command1 ,command2;
std::string cmd="gdalinifo ";
std::cout << "gdal source image 1 inforamtion " <<system(cmd.c_str())<<std::endl;
std::cout << "Source image size = (" << w << "," << h << ")" << std::endl;
std::cout << "Target image size = (" << w2 << "," << h2 << ")" << std::endl;
std::cout << "Initializing data..." << std::endl;
InitCuda(devNum);
CudaImage img1, img2;
img1.Allocate(w, h, iAlignUp(w, 128), false, NULL, (float*)limg.data);
img2.Allocate(w, h, iAlignUp(w, 128), false, NULL, (float*)rimg.data);
img1.Download();
img2.Download();
// Extract Sift features from images
SiftData siftData1, siftData2;
float initBlur = 0.3f;
//float thresh =3.3f;
float thresh = (imgSet ? 4.5f : 3.0f);
//std::cin>>thresh ;
//std::cin>>initBlur;
std::cout<<"Threshold value :"<<thresh<<std::endl;
InitSiftData(siftData1, 132768, true, true); //before it was 100,000
InitSiftData(siftData2, 132768, true, true); //before it was 100,000
system("nvidia-smi");
// A bit of benchmarking
//for (int thresh1=1.00f;thresh1<=4.01f;thresh1+=0.50f) {
float *memoryTmp = AllocSiftTempMemory(w, h, 5, false);
for (int i=0;i<1000;i++) {
ExtractSift(siftData1, img1, 3, initBlur, thresh, 0.0f, false, memoryTmp);
ExtractSift(siftData2, img2, 3, initBlur, thresh, 0.0f, false, memoryTmp);
}
FreeSiftTempMemory(memoryTmp);
// Match Sift features and find a homography
for (int i=0;i<1;i++)
MatchSiftData(siftData1, siftData2);
float homography[9];
int numMatches;
FindHomography(siftData1, homography, &numMatches, 10000, 0.0f, 0.80f, 5.0);
int numFit = ImproveHomography(siftData1, homography, 5, 0.0f, 0.80f, 3.0);
std::cout << "Number features detected by SIFT descriptors : " <<"Source Image "<< siftData1.numPts << ", Target Image " << siftData2.numPts << std::endl;
std::cout << "Number of Matched features: " << numMatches <<std::endl;
std::cout << "Number of fitted features after applying ImproveHomography : " << numFit <<std::endl;
std::cout << 100.0f*numFit/std::min(siftData1.numPts, siftData2.numPts) << "% " <<std::endl;
string ss1 = (argv[1]);
string ss2 = (argv[6]);
std::cout<<ss1;
char sep = '/';
size_t i = ss1.rfind(sep, ss1.length());
size_t i2 = ss2.rfind(sep, ss2.length());
if (i != string::npos && i2 != string::npos)
{
string filename = ss1.substr(i+1, ss1.length() - i);
string filename2 = ss2.substr(i2+1, ss2.length() - i2);
size_t lastindex = filename.find_last_of(".");
size_t lastindex2 = filename2.find_last_of(".");
string rawname = filename.substr(0, lastindex);
string rawname2 = filename2.substr(0, lastindex2);
PrintMatchData(siftData1, siftData2, img1, rawname, rawname2);
}
cv::imwrite("/home/aymen/SummerRadical/SIFT-GPU/source_output.pgm", limg);
std::cout<< "img1 saved"<<std::endl;
cv::imwrite("/home/aymen/SummerRadical/SIFT-GPU/target_output.pgm", rimg);
std::cout<< "img2 saved"<<std::endl;
std::cout << "Output Images are saved in the same directory !) "<<std::endl;
//MatchAll(siftData1, siftData2, homography);
// Free Sift data from device
FreeSiftData(siftData1);
FreeSiftData(siftData2);
}
void MatchAll(SiftData &siftData1, SiftData &siftData2, float *homography)
{
#ifdef MANAGEDMEM
SiftPoint *sift1 = siftData1.m_data;
SiftPoint *sift2 = siftData2.m_data;
#else
SiftPoint *sift1 = siftData1.h_data;
SiftPoint *sift2 = siftData2.h_data;
#endif
int numPts1 = siftData1.numPts;
int numPts2 = siftData2.numPts;
int numFound = 0;
#if 1
homography[0] = homography[4] = -1.0f;
homography[1] = homography[3] = homography[6] = homography[7] = 0.0f;
homography[2] = 1279.0f;
homography[5] = 959.0f;
#endif
for (int i=0;i<numPts1;i++) {
float *data1 = sift1[i].data;
std::cout << i << ":" << sift1[i].scale << ":" << (int)sift1[i].orientation << " " << sift1[i].xpos << " " << sift1[i].ypos << std::endl;
bool found = false;
for (int j=0;j<numPts2;j++) {
float *data2 = sift2[j].data;
float sum = 0.0f;
for (int k=0;k<128;k++)
sum += data1[k]*data2[k];
float den = homography[6]*sift1[i].xpos + homography[7]*sift1[i].ypos + homography[8];
float dx = (homography[0]*sift1[i].xpos + homography[1]*sift1[i].ypos + homography[2]) / den - sift2[j].xpos;
float dy = (homography[3]*sift1[i].xpos + homography[4]*sift1[i].ypos + homography[5]) / den - sift2[j].ypos;
float err = dx*dx + dy*dy;
if (err<100.0f) // 100.0
found = true;
if (err<100.0f || j==sift1[i].match) { // 100.0
if (j==sift1[i].match && err<100.0f)
std::cout << " *";
else if (j==sift1[i].match)
std::cout << " -";
else if (err<100.0f)
std::cout << " +";
else
std::cout << " ";
std::cout << j << ":" << sum << ":" << (int)sqrt(err) << ":" << sift2[j].scale << ":" << (int)sift2[j].orientation << " " << sift2[j].xpos << " " << sift2[j].ypos << " " << (int)dx << " " << (int)dy << std::endl;
}
}
std::cout << std::endl;
if (found)
numFound++;
}
std::cout << "Number of finds: " << numFound << " / " << numPts1 << std::endl;
std::cout << homography[0] << " " << homography[1] << " " << homography[2] << std::endl;//%%%
std::cout << homography[3] << " " << homography[4] << " " << homography[5] << std::endl;//%%%
std::cout << homography[6] << " " << homography[7] << " " << homography[8] << std::endl;//%%%
}
void PrintMatchData(SiftData &siftData1, SiftData &siftData2, CudaImage &img, const string& s, const string& s2)
{
//@aymenalsaadi creating a csv file to save the matched keypoints
std::ofstream myfile;
string ss1 = s;
string ss2 = s2;
string ff = string("/pylon5/mc3bggp/aymen/cuda_out/sift_matches_")+ss1+string("_")+ss2+string(".csv");
const char * c = ff.c_str();
//myfile.open(c);
myfile.open(c, std::ofstream::out | std::ofstream::trunc);
myfile<<"x1, y1, sigma1, angle1, t1_x, t1_y, theta1, x2, y2, sigma2, angle2, t2_x, t2_y, theta2"<<std::endl;
//myfile.close();
//@aymenalsaadi creating a csv file to save the matched keypoints
int numPts = siftData1.numPts;
#ifdef MANAGEDMEM
SiftPoint *sift1 = siftData1.m_data;
SiftPoint *sift2 = siftData2.m_data;
#else
SiftPoint *sift1 = siftData1.h_data;
SiftPoint *sift2 = siftData2.h_data;
#endif
float *h_img = img.h_data;
int w = img.width;
int h = img.height;
std::cout << std::setprecision(3);
for (int j=0;j<numPts;j++) {
int k = sift1[j].match;
if (sift1[j].match_error<5) {
float dx = sift2[k].xpos - sift1[j].xpos;
float dy = sift2[k].ypos - sift1[j].ypos;
#if 0
if (false && sift1[j].xpos>550 && sift1[j].xpos<600) {
std::cout << "pos1=(" << (int)sift1[j].xpos << "," << (int)sift1[j].ypos << ") ";
std::cout << j << ": " << "score=" << sift1[j].score << " ambiguity=" << sift1[j].ambiguity << " match=" << k << " ";
std::cout << "scale=" << sift1[j].scale << " ";
std::cout << "error=" << (int)sift1[j].match_error << " ";
std::cout << "orient=" << (int)sift1[j].orientation << "," << (int)sift2[k].orientation << " ";
std::cout << " delta=(" << (int)dx << "," << (int)dy << ")" << std::endl;
}
#endif
#if 1
int len = (int)(fabs(dx)>fabs(dy) ? fabs(dx) : fabs(dy));
for (int l=0;l<len;l++) {
int x = (int)(sift1[j].xpos + dx*l/len);
int y = (int)(sift1[j].ypos + dy*l/len);
h_img[y*w+x] = 255.0f;
}
#endif
}
int x = (int)(sift1[j].xpos+0.5);
int y = (int)(sift1[j].ypos+0.5);
int x2 = (int)(sift2[j].xpos+0.5);
int y2 = (int)(sift2[j].ypos+0.5);
int s = std::min(x, std::min(y, std::min(w-x-2, std::min(h-y-2, (int)(1.41*sift1[j].scale)))));
int s2 = std::min(x, std::min(y, std::min(w-x-2, std::min(h-y-2, (int)(1.41*sift2[j].scale)))));
int p = y*w + x;
int p2 = y2*w + x2;
myfile<<(x)<<","<<(y)<<","<<(s)<<","<<(s2)<<","<<(p)<<","<<(p2)<<","<<(x2)<<","<<(y2)<<","<<(s)<<","<<(s2)<<","<<(p)<<","<<(p2)<<","<<(s)<<","<<(p)<<std::endl;
p += (w+1);
for (int k=0;k<s;k++)
h_img[p-k] = h_img[p+k] = h_img[p-k*w] = h_img[p+k*w] = 0.0f;
p -= (w+1);
for (int k=0;k<s;k++)
h_img[p-k] = h_img[p+k] = h_img[p-k*w] =h_img[p+k*w] = 255.0f;
}
std::cout << std::setprecision(6);
}