Skip to content

Commit e1a948f

Browse files
authored
Merge pull request #168 from rastala/master
version 1.0.8
2 parents f724cb4 + 3ca40c0 commit e1a948f

File tree

58 files changed

+24905
-25149
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

58 files changed

+24905
-25149
lines changed

README.md

+33-17
Original file line numberDiff line numberDiff line change
@@ -1,40 +1,56 @@
1-
# Azure Machine Learning service sample notebooks
2-
3-
---
1+
# Azure Machine Learning service example notebooks
42

53
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK
64
which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK
75
allows you the choice of using local or cloud compute resources, while managing
86
and maintaining the complete data science workflow from the cloud.
97

10-
* Read [instructions on setting up notebooks](./NBSETUP.md) to run these notebooks.
8+
![Azure ML workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/service/media/overview-what-is-azure-ml/aml.png)
119

12-
* Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
10+
## How to use and navigate the example notebooks?
1311

14-
## Getting Started
12+
You can set up you own Python environment or use Azure Notebooks with Azure ML SDK pre-installed. Read [these instructions](./NBSETUP.md) to set up your environment and clone the example notebooks.
1513

16-
These examples will provide you with an effective way to get started using AML. Once you're familiar with
17-
some of the capabilities, explore the repository for specific topics.
14+
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
1815

19-
- [Configuration](./configuration.ipynb) configures your notebook library to easily connect to an
20-
Azure Machine Learning workspace, and sets up your workspace to be used by many of the other examples. You should
21-
always run this first when setting up a notebook library on a new machine or in a new environment
22-
- [Train in notebook](./how-to-use-azureml/training/train-within-notebook) shows how to create a model directly in a notebook while recording
23-
metrics and deploy that model to a test service
24-
- [Train on remote](./how-to-use-azureml/training/train-on-remote-vm) takes the previous example and shows how to create the model on a cloud compute target
25-
- [Production deploy to AKS](./how-to-use-azureml/deployment/production-deploy-to-aks) shows how to create a production grade inferencing webservice
16+
If you want to...
17+
18+
* ...try out and explore Azure ML, start with image classification tutorials [part 1 training](./tutorials/img-classification-part1-training.ipynb) and [part 2 deployment](./tutorials/img-classification-part2-deploy.ipynb).
19+
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
20+
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
21+
* ...deploy model as realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
22+
* ...deploy models as batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
23+
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
2624

2725
## Tutorials
2826

2927
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs)
3028

31-
## How to use AML
29+
## How to use Azure ML
3230

33-
The [How to use AML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
31+
The [How to use Azure ML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
3432

3533
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets.
3634
- [Training with Deep Learning](./how-to-use-azureml/training-with-deep-learning) - Examples demonstrating how to build deep learning models using estimators and parameter sweeps
3735
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
3836
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
3937
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
4038
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
39+
40+
---
41+
## Documentation
42+
43+
* Quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
44+
45+
* [Python SDK reference]( https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py)
46+
47+
48+
---
49+
50+
## Projects using Azure Machine Learning
51+
52+
Visit following repos to see projects contributed by Azure ML users:
53+
54+
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
55+
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
56+

how-to-use-azureml/automated-machine-learning/automl_setup.cmd

+4
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,10 @@ if errorlevel 1 goto ErrorExit
2323

2424
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
2525

26+
REM azureml.widgets is now installed as part of the pip install under the conda env.
27+
REM Removing the old user install so that the notebooks will use the latest widget.
28+
call jupyter nbextension uninstall --user --py azureml.widgets
29+
2630
echo.
2731
echo.
2832
echo ***************************************

how-to-use-azureml/automated-machine-learning/automl_setup_linux.sh

+3-1
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,13 @@ fi
2222
if source activate $CONDA_ENV_NAME 2> /dev/null
2323
then
2424
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
25-
pip install --upgrade azureml-sdk[automl,notebooks,explain]
25+
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
26+
jupyter nbextension uninstall --user --py azureml.widgets
2627
else
2728
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
2829
source activate $CONDA_ENV_NAME &&
2930
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
31+
jupyter nbextension uninstall --user --py azureml.widgets &&
3032
echo "" &&
3133
echo "" &&
3234
echo "***************************************" &&

how-to-use-azureml/automated-machine-learning/automl_setup_mac.sh

+4-2
Original file line numberDiff line numberDiff line change
@@ -22,13 +22,15 @@ fi
2222
if source activate $CONDA_ENV_NAME 2> /dev/null
2323
then
2424
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
25-
pip install --upgrade azureml-sdk[automl,notebooks,explain]
25+
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
26+
jupyter nbextension uninstall --user --py azureml.widgets
2627
else
2728
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
2829
source activate $CONDA_ENV_NAME &&
2930
conda install lightgbm -c conda-forge -y &&
3031
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
31-
pip install numpy==1.15.3
32+
jupyter nbextension uninstall --user --py azureml.widgets &&
33+
pip install numpy==1.15.3 &&
3234
echo "" &&
3335
echo "" &&
3436
echo "***************************************" &&

0 commit comments

Comments
 (0)