-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_mix.py
208 lines (188 loc) · 6.82 KB
/
spm_mix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import collections
from scipy import special as spec
import math
## spm_kl_normal1D function
def spm_kl_normal1D(m_q,c_q,m_p,c_p):
Term1=0.5*(math.log(c_p))-0.5*(math.log(c_q));
inv_c_p=1/c_p;
Term2=0.5*(inv_c_p*c_q)+0.5*(m_q-m_p)*inv_c_p*(m_q-m_p);
d=Term1+Term2-0.5;
return d;
## spm_kl_gamma function
def spm_kl_gamma( b_q,c_q,b_p,c_p ):
digamma_c_q=spec.psi(c_q);
d=(c_q-1)*digamma_c_q-math.log(b_q)-c_q-spec.gammaln(c_q);
d=d+spec.gammaln(c_p)+c_p*math.log(b_p)-(c_p-1)*(digamma_c_q+math.log(b_q));
d=d+b_q*c_q/b_p;
return d;
## spm_kmeans1 function
def spm_kmeans1( y, k ):
#A 1-D array, containing the elements of the input, is returned.
y=y.ravel('F')
N=len(y)
###Spread seeds evenly according to CDF
x=sorted(y)
i=sorted(range(len(y)), key=y.__getitem__)
#pp=[1,2*np.ones(k-1)]
pp= np.append([0],[2*np.ones(k-1)])
seeds=map(lambda i: i * N/(2*k*1.0), pp)
#seeds=[xx * N/(2*k*1.0) for xx in pp]
import math
seeds = np.asarray(map(math.ceil, np.cumsum(seeds))).astype(int)
last_i=np.zeros(N);
m=np.array(x)[seeds].astype('float');
d=np.array([[0 for i in range(len(x))] for j in range(k)]);
for loops in range(1,101):
for j in range(0,k):
d[j,:]=(y-m[j])**2
i=np.argmin(d,axis=0)
if sum( np.subtract(i,last_i))==0:
break
else:
for j in range(0,k):
m[j]=np.mean(y[i==j])
last_i=i;
### Compute variances and mixing proportions
v=np.zeros(k)
pi=np.zeros(k)
for j in range(0,k):
v[j]=np.mean((y[i==j]-m[j])**2);
pi[j]=len(y[i==j])/(N*1.0);
# import collections
# mix1=collections.namedtuple('mix1', 'v m pi k nloops assign');
# mix1(v=v, m=m, pi=pi, k=k, nloops = loops,assign=i)
mix1 = {‘v’: v, ‘m’: m, ‘pi’ : pi, ‘k’ : k, ‘nloops’ : loops, ‘assign’ : i}
# return mix1(v=v, m=m, pi=pi, k=k, nloops = loops,assign=i);
return mix1;
## spm_kl_dirichlet function
def spm_kl_dirichlet(*argv):
if len(argv) <3:
m=len(lambda_q);
lambda_tot=sum(lambda_q);
dglt=spec.psi(lambda_tot);
log_tilde_pi=list();
for s in range(m):
log_tilde_pi.append(spec.psi(lambda_q[s])-dglt);
else:
lambda_q=argv[0];
lambda_p=argv[1];
log_tilde_pi=argv[2];
d=spec.gammaln(sum(lambda_q));
d=d+np.sum(np.multiply((lambda_q-lambda_p),log_tilde_pi));
d=d-sum(spec.gammaln(lambda_q));
d=d-spec.gammaln(np.sum(lambda_p));
d=d+np.sum(spec.gammaln(lambda_p));
return d;
y=np.array([[3,1,2,6,5,4]]).T
N,d= np.shape(y)
#spm_kmeans1.func_code.co_argcount
import collections
mix = collections.namedtuple('mix', 'nin m')
m=4 # number of components
mix(nin=d, m=m)
m_0=y.mean(axis=0)
lambda_0=1
beta_0=1
B_0=0.01*d*np.eye(d, dtype=int);
a_0=d
prior=collections.namedtuple('prior', 'lambda_0 m_0 beta_0 a_0 B_0');
prior=prior(lambda_0=lambda_0, m_0=m_0, beta_0=beta_0, a_0=a_0, B_0=B_0)
mix=collections.namedtuple('mix', 'nin m prior')
mix=mix(nin=d, m=m, prior=prior)
#from scipy import special as spec
sd=0.0
sd=sum(map(lambda xx: sd+ spec.psi((float)(a_0+1-1)/2),range(1,d+1)))
import math
log_tilde_gamma_0=sd-np.log(B_0)+math.log(2)
tmp= spm_kmeans1(y,m);
means=tmp.m;
covs=tmp.v;
priors=tmp.pi;
# Add pseudo-counts to ML priors
priors=map(lambda xx: xx + 1/(N*1.0), priors)
lambd = priors
state= [dict() for x in range(m)]
N_bar= [None] * m
for s in range(m):
Cov=covs[s];
state[s]={'m': means[s], 'beta': priors[s]*N+beta_0, 'a':priors[s]*N+a_0, 'B':priors[s]*N*Cov};
N_bar[s]=priors[s]*N;
# Start algorithm
lik=[];
tol=0.001;
max_loops=100;
for loops in range(max_loops):
# E-step
lambda_tot=sum(lambd);
log_tilde_pi=list();log_tilde_gamma=list();tilde_pi=list();tilde_gamma=list();
gamma=np.array([[0 for i in range(N)] for j in range(m)],dtype=np.float);
for s in range(m):
state[s].update({'bar_gamma':state[s].get('a')* (1/(state[s].get('B')))});
log_tilde_pi.append(spec.psi(lambd[s])-spec.psi(lambda_tot));
sd=0.0;
sd=sum(map(lambda xx: sd+ spec.psi((state[s].get('a')+1-xx)/2),range(1,d+1)));
log_tilde_gamma.append(sd-np.log(state[s].get('B'))+d*np.log(2));
tilde_pi.append(np.exp(log_tilde_pi[s]));
tilde_gamma.append(np.exp(log_tilde_gamma[s]));
for n in range(N):
gamma[s,n]=tilde_pi[s]*tilde_gamma[s]**0.5;
dy=(y[n,0]-state[s].get('m'));
gamma[s,n]=gamma[s,n]*(np.exp(-0.5*dy*state[s].get('bar_gamma')*dy)+np.finfo(float).eps)*np.exp(-d/(2*state[s].get('beta')));
gamma_n=np.sum(gamma,axis=0);
for s in range(m):
if np.mean(gamma_n) > np.finfo(float).eps:
gamma[s,:]=gamma[s,:]/gamma_n;
% M-step
% Part -I
pi_bar=list(); bar_mu=list();
for s in range(m):
pi_bar.append(np.mean(gamma[s,:])+np.finfo(float).eps);
N_bar[s]=N*pi_bar[s]+np.finfo(float).eps;
bar_mu.append(1/N_bar[s]*np.sum(np.multiply(np.matmul(gamma[s,:][np.newaxis].T,np.ones((1,d))),y),axis=0));
# get weighted means and covariances
for s in range(m):
state[s].update({'bar_sigma':np.zeros((d,1))});
for n in range(N):
dy=y[n]-bar_mu[s];
state[s].update({'bar_sigma':state[s].get('bar_sigma')+np.multiply(gamma[s,n],(dy*dy))});
state[s].update({'bar_sigma':(state[s].get('bar_sigma'))/N_bar[s]});
# now compute free energy
f1=-spm_kl_dirichlet(lambd,lambda_0*np.ones((1,m)),log_tilde_pi);
f2=list(); Cs=list(); C0=list(); f3=list(); f4=list(); f5=list(); fkl=list(); fkl_adj=list();
for s in range(m):
f2.append(np.asscalar(-spm_kl_gamma(state[s].get('a'),state[s].get(‘B’),a_0,B_0)));
# KL-method for computing f3(s)
Cs.append(state[s].get('B')/(state[s].get('beta')*state[s].get('a')));
C0.append(state[s].get('B')/(beta_0*state[s].get('a')));
f3.append(spm_kl_normal1D(state[s].get('m'),Cs[s],np.asscalar(m_0),C0[s]));
# Check f3(s)
check_f3=-0.5*d*(math.log(state[s].get('beta'))-math.log(beta_0)+(beta_0/state[s].get('beta'))-1);
dm=np.asscalar(state[s].get(‘m’)-m_0);
check_f3=check_f3-0.5*dm*beta_0*state[s].get('a')* (1/state[s].get('B')) *dm;
f3[s]=check_f3;
f4.append(N_bar[s]*log_tilde_pi[s]-sum(np.multiply(gamma[s,:],np.log(gamma[s,:]+np.finfo(float).eps))));
LaB=0;LaB =spec.psi((state[s].get('a')+1-d)/2);
LaB=LaB+d*math.log(2)-math.log((state[s].get(‘B’)));
f5.append(np.asscalar(0.5*N_bar[s]*(-d*math.log(2*math.pi)+LaB-(state[s].get('bar_gamma')*state[s].get('bar_sigma'))-(d/state[s].get('beta')))));
fkl.append(f2[s]+f3[s]+f4[s]+f5[s]);
fkl_adj.append(f2[s]+f3[s]+(f4[s]+f5[s])/N_bar[s]);
fm=f1+sum(f2)+sum(f3)+sum(f4)+sum(f5);
acc=sum(f4)+sum(f5);
kl_proportions=-f1;
kl_covs=-sum(f2);
kl_centres=-sum(f3);
# Convergence criterion
oldlik=lik;
lik=fm;
if loops>0:
if abs((lik-oldlik)/lik) < tol:
break;
# Part-II
for s in range(m):
lambd[s]=N_bar[s]+lambda_0;
state[s].update({'m':np.asscalar((N_bar[s]*bar_mu[s]+beta_0*m_0)/(N_bar[s]+beta_0))});
state[s].update({'beta':N_bar[s]+beta_0});
state[s].update({’a’:N_bar[s]+a_0});
dy=np.asscalar(bar_mu[s]-m_0);
state[s].update({'B':np.asscalar(N_bar[s]*state[s].get('bar_sigma') + (N_bar[s]*beta_0*dy*dy)/(N_bar[s]+beta_0)+B_0)});