-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTrain.py
300 lines (255 loc) · 10.7 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from __future__ import print_function, absolute_import
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.nn.utils.clip_grad import clip_grad_norm
from SketchANetModel import SketchANetModel
from AlexNetModel import AlexNetModel
from ResNetModel import ResNetModel
parser = argparse.ArgumentParser(description='PyTorch Sketch Me That Shoe Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 10)')
parser.add_argument('--epochs', type=int, default=2000, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--weight_decay', type=float, default=0.0005,
help='Adm weight decay')
parser.add_argument('--lr', type=float, default=2e-4, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--print-freq', '-p', default=15, type=int, metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--classes', type=int, default=419,
help='number of classes')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--name', default='TripletNetModel', type=str,
help='name of experiment')
parser.add_argument('--normalize_feature', default=False, type=bool,
help='normalize_feature')
best_acc = 0
def to_scalar(vt):
"""Transform a length-1 pytorch Variable or Tensor to scalar.
Suppose tx is a torch Tensor with shape tx.size() = torch.Size([1]),
then npx = tx.cpu().numpy() has shape (1,), not 1."""
if isinstance(vt, Variable):
return vt.data.cpu().numpy().flatten()[0]
if torch.is_tensor(vt):
return vt.cpu().numpy().flatten()[0]
raise TypeError('Input should be a variable or tensor')
def main():
global args, best_acc
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}
###### DataSet ######
sketch_dir = r"/home/bc/Work/Database/TU-Berlin sketch dataset/png"
# sketch_dir = r"/home/bc/Work/Database/Dogs_Cats/catdog/train"
train_dataset = datasets.ImageFolder(
sketch_dir,
transform=transforms.Compose([
transforms.Resize([256, 256]),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs
)
test_dir = r"/home/bc/Work/Database/Dogs_Cats/catdog/val"
test_dataset = datasets.ImageFolder(
test_dir,
transform=transforms.Compose([
transforms.Resize([256, 256]),
transforms.CenterCrop(224),
transforms.ToTensor(),
#transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
])
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs
)
###### Model ######
# snet = SketchANetModel(num_classes=250)
# snet = AlexNetModel(num_classes=250)
snet = ResNetModel(num_classes=250)
print(snet)
if args.cuda:
snet.cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_prec']
snet.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
###### Criteria ######
id_criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(snet.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
n_parameters = sum([p.data.nelement() for p in snet.parameters()])
print(' + Number of params: {}'.format(n_parameters))
for epoch in range(1, args.epochs + 1):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, snet, id_criterion, optimizer, epoch)
# evaluate on validation set
# prec1 = test(test_loader, snet, id_criterion, epoch)
# remember best Accuracy and save checkpoint
#is_best = prec1 > best_acc
is_best = True
#best_acc = max(prec1, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': snet.state_dict(),
'best_prec': best_acc,
}, is_best)
def train(train_loader, snet, id_criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
snet.train()
end = time.time()
for batch_indx, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.cuda:
input, target = input.cuda(), target.cuda()
input, target = Variable(input), Variable(target)
# compute output
_, output = snet(input)
# print(output.data[0])
loss = id_criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# clip_grad_norm(snet.parameters(), 100.0)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_indx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.4f} ({top1.avg:.4f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, batch_indx, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
def test(test_loader, snet, criterion, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
snet.eval()
end = time.time()
for batch_indx, (input, target) in enumerate(test_loader):
if args.cuda:
input, target = input.cuda(), target.cuda()
input, target = Variable(input), Variable(target)
# compute output
_, output = snet(input)
output = snet(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_indx % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
batch_indx, len(test_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = "runs/%s/" % (args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'runs/%s/' % (args.name) + 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 10))
for param_group in optimizer.state_dict()['param_groups']:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()