-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsketchanet.py
51 lines (46 loc) · 1.61 KB
/
sketchanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
model_paths ={
'sketchanet': '',
}
class SketchANet(nn.Module):
def __init__(self, num_classes=250):
super(SketchANet, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=15, stride=3, padding=0),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 128, kernel_size=5, padding=0),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(256 * 6 * 6, 512),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(512, num_classes),
)
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
def sketchanet(pretrained=False, **kwargs):
model = SketchANet(**kwargs)
if pretrained:
model.load_state_dict(torch.load(model_paths['sketchanet']))
new_classifer = nn.Sequential(*list(model.classifier.children())[:-1])
model.classifier = new_classifer
return model