-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataGenTFRecord.py
50 lines (36 loc) · 1.25 KB
/
DataGenTFRecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import os
import cv2
from PIL import Image
def _int64_feature(value):
return tf.train.Feature(int64_list = tf.train.Int64List(value = [value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value]))
DEPTH = 3
def convert_to(data_path, name):
rows = 256
cols = 256
depth = DEPTH
writer = tf.python_io.TFRecordWriter(name + '.tfrecords')
for img_name in os.listdir(data_path):
img_path = data_path + '\\' + img_name
img = Image.open(img_path)
img = img.resize((256, 256))
img_raw = img.tobytes()
label = img_name[:-4]
label = int(label)
example = tf.train.Example(features = tf.train.Features(feature = {
'image_label': _int64_feature(label),
'image_raw':_bytes_feature(img_raw)
}))
writer.write(example.SerializeToString())
writer.close()
data_path = r'E:\work\Python\shoes\train\images'
name = 'shoes_images_train'
convert_to(data_path, name)
data_path = r'E:\work\Python\shoes\train\sketches'
name = 'shoes_sketches_train'
convert_to(data_path, name)