-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainModel_Siamese.py
220 lines (183 loc) · 9.73 KB
/
TrainModel_Siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import os
from ReadData_np import ReadData
from SketchNet import SketchNet
from ImageNetPos import ImageNetPos
from ImageNetNeg import ImageNetNeg
data_name = ''
learning_rate_init = 0.01
training_iters = 135 * 1000
batch_size = 135
display_step = 5
save_step = 200
test_step = 50
margin = 6.0 / 407
dropout = 0.8
beta = 1e-5
dir_name = r'./CheckPoin/'
# Store layers weight & bias
with tf.name_scope('Image_Weights') as scope:
image_weights = {
'wc1': tf.Variable(tf.random_normal([15, 15, 3, 64]), name = 'wc1'),
'wc2': tf.Variable(tf.random_normal([5, 5, 64, 128]), name = 'wc2'),
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256]), name = 'wc3'),
'wc4': tf.Variable(tf.random_normal([3, 3, 256, 256]), name = 'wc4'),
'wc5': tf.Variable(tf.random_normal([3, 3, 256, 256]), name = 'wc5'),
'wd1': tf.Variable(tf.random_normal([8*8*256, 512]), name = 'wd1'),
'wd2': tf.Variable(tf.random_normal([512, 256]), name = 'wd2'),
}
with tf.name_scope('Image_Biases') as scope:
image_biases = {
'bc1': tf.Variable(tf.random_normal([64]), name = 'bc1'),
'bc2': tf.Variable(tf.random_normal([128]), name = 'bc2'),
'bc3': tf.Variable(tf.random_normal([256]), name = 'bc3'),
'bc4': tf.Variable(tf.random_normal([256]), name = 'bc4'),
'bc5': tf.Variable(tf.random_normal([256]), name = 'bc5'),
'bd1': tf.Variable(tf.random_normal([512]), name = 'bd1'),
'bd2': tf.Variable(tf.random_normal([256]), name = 'bd2'),
}
with tf.name_scope('Sketch_Weights') as scope:
sketch_weights = {
'wc1': tf.Variable(tf.random_normal([15, 15, 3, 64]), name = 'wc1'),
'wc2': tf.Variable(tf.random_normal([5, 5, 64, 128]), name = 'wc2'),
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256]), name = 'wc3'),
'wc4': tf.Variable(tf.random_normal([3, 3, 256, 256]), name = 'wc4'),
'wc5': tf.Variable(tf.random_normal([3, 3, 256, 256]), name = 'wc5'),
'wd1': tf.Variable(tf.random_normal([8*8*256, 512]), name = 'wd1'),
'wd2': tf.Variable(tf.random_normal([512, 256]), name = 'wd2'),
}
with tf.name_scope('Sketch_Biases') as scope:
sketch_biases = {
'bc1': tf.Variable(tf.random_normal([64]), name = 'bc1'),
'bc2': tf.Variable(tf.random_normal([128]), name = 'bc2'),
'bc3': tf.Variable(tf.random_normal([256]), name = 'bc3'),
'bc4': tf.Variable(tf.random_normal([256]), name = 'bc4'),
'bc5': tf.Variable(tf.random_normal([256]), name = 'bc5'),
'bd1': tf.Variable(tf.random_normal([512]), name = 'bd1'),
'bd2': tf.Variable(tf.random_normal([256]), name = 'bd2'),
}
def EuclideanDist(a, b):
return tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(a, b)), 1))
def Count(a, b):
count = 0
for i in range(45):
if a[i] < b[i]:
count += 1
return count
def Test(pos_val, neg_val):
count = 0
count1 = Count(pos_val[0:45], neg_val[0:45])
count2 = Count(pos_val[45:90], neg_val[45:90])
count3 = Count(pos_val[90:135], neg_val[45:90])
count += (count1 + count3 + count3)
print('Testing Accuracy: First : ' + '{:.09f}'.format(count1 / 45.0) + ' Second : ' + '{:.09f}'.format(count2 / 45.0) + ' Third : ' + '{:.09f}'.format(count3 / 45.0))
print('Batch total Accuracy : ' + '{:.09f}'.format((count1 + count2 + count3)/ 135.0))
return count
def run_training():
sketchs_placeholder = tf.placeholder(tf.float32)
images_neg_placeholder = tf.placeholder(tf.float32)
images_pos_placeholder = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32)
# Three Branch Net
sketch_dense = SketchNet(sketchs_placeholder, _weights = image_weights, _biases = image_biases, dropout_prob = keep_prob)
image_pos_dense = ImageNetPos(images_neg_placeholder, _weights = image_weights, _biases = image_biases, dropout_prob = keep_prob)
image_neg_dense = ImageNetNeg(images_pos_placeholder, _weights = image_weights, _biases = image_biases, dropout_prob = keep_prob)
tf.summary.tensor_summary("sketch_dense", sketch_dense)
tf.summary.tensor_summary("image_pos_dense", image_pos_dense)
tf.summary.tensor_summary("image_neg_dense", image_neg_dense)
# Euclidean Distance
dist_pos = EuclideanDist(sketch_dense, image_pos_dense)
dist_neg = EuclideanDist(sketch_dense, image_neg_dense)
margins = tf.constant(margin, dtype = tf.float32, shape = [batch_size])
with tf.name_scope('Loss') as scope:
zeros = tf.constant(0.0, dtype = tf.float32, shape = [batch_size])
regularizers = tf.nn.l2_loss(image_weights['wc1']) + tf.nn.l2_loss(image_weights['wc2']) + tf.nn.l2_loss(image_weights['wc3']) \
+ tf.nn.l2_loss(image_weights['wc4']) + tf.nn.l2_loss(image_weights['wc5']) + tf.nn.l2_loss(image_weights['wd1']) \
+ tf.nn.l2_loss(image_weights['wd2']) \
#+ tf.nn.l2_loss(sketch_weights['wc1']) + tf.nn.l2_loss(sketch_weights['wc2']) + tf.nn.l2_loss(sketch_weights['wc3']) \
#+ tf.nn.l2_loss(sketch_weights['wc4']) + tf.nn.l2_loss(sketch_weights['wc5']) + tf.nn.l2_loss(sketch_weights['wd1']) \
#+ tf.nn.l2_loss(sketch_weights['wd2'])
cost = tf.reduce_sum( tf.nn.relu(margins + dist_pos - dist_neg) ) + beta * regularizers
tf.summary.scalar("loss", cost)
with tf.name_scope('Optimizer') as scope:
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(learning_rate_init, global_step, 200, 0.98, staircase = True, name='learning_rate')
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost, global_step = global_step)
tf.summary.scalar('global step', global_step)
tf.summary.scalar('learning_rate', learning_rate)
# Test correct order Accuray
with tf.name_scope('Accuracy') as scope:
less = tf.less(dist_pos, dist_neg, name ='Less')
batch_count = tf.reduce_sum(tf.cast(less, tf.float32))
batch_Accuracy = tf.divide(batch_count, 135.0)
tf.summary.scalar('Accuracy', batch_Accuracy)
# Add the variable initializer Op to the graph
init = tf.global_variables_initializer()
# Merge all summary
merged_summary_op = tf.summary.merge_all()
# Create a saver for writing training checkpoints
saver = tf.train.Saver()
# Create a session for running the Ops on the graph
with tf.Session() as sess:
# Restore the variables or Run the Op to initialize variables
latest_ckpt_file = tf.train.latest_checkpoint(os.path.join(dir_name, 'ckpt'))
if latest_ckpt_file is not None:
saver.restore(sess, latest_ckpt_file)
print('Model Restored')
else:
sess.run(init)
summary_writer = tf.summary.FileWriter('./logs', graph_def=sess.graph_def)
# train
step = 1
train_data = ReadData(sess, batch_size, is_train = True)
test_data = ReadData(sess, batch_size, is_train = False)
while step * batch_size <= training_iters:
s, ipos, ineg = next(train_data)
print('Start optimizer :', step)
sess.run(optimizer, feed_dict = {sketchs_placeholder : s, images_neg_placeholder : ipos,
images_pos_placeholder : ineg, keep_prob: dropout})
print('optimizer :', step, 'finised!')
if step % display_step == 0:
summary_str, loss = sess.run([merged_summary_op, cost], feed_dict = {sketchs_placeholder : s, images_neg_placeholder : ipos,
images_pos_placeholder : ineg, keep_prob: 1.0})
print("Iter" + str(step) + ", Minibatch Loss= " + "{:.09f}".format(loss))
summary_writer.add_summary(summary_str, step)
# Save Model
if step % save_step == 0:
print("Saving model checkpoint after {} steps.".format(step))
checkpoint_file = os.path.join(dir_name, 'ckpt', 'model.ckpt')
saver.save(sess, checkpoint_file, step)
print('Checkpoint Saved!')
if step % test_step == 0:
index = 1
count = 0
while index * batch_size <= 117*45:
s, ipos, ineg = next(test_data)
b_count, b_Accuracy = sess.run([batch_count, batch_Accuracy], feed_dict = {sketchs_placeholder : s, images_neg_placeholder : ipos,
images_pos_placeholder : ineg, keep_prob: 1.0})
print('Batch test: ', index)
print('Batch total Accuracy : ' + '{:.09f}'.format(b_Accuracy))
count += b_count
index += 1
accuracy = count / (117*45)
print('Total Accuracy : ', '{:.09f}'.format(accuracy))
step += 1
print("Optimization Finished!")
# test
index = 1
count = 0
while index * batch_size <= 117*45:
s, ipos, ineg = next(test_data)
b_count, b_Accuracy = sess.run([batch_count, batch_Accuracy], feed_dict = {sketchs_placeholder : s, images_neg_placeholder : ipos,
images_pos_placeholder : ineg, keep_prob: 1.0})
print('Batch test: ', index)
print('Batch total Accuracy : ' + '{:.09f}'.format(b_Accuracy))
count += b_count
index += 1
accuracy = count / (117*45)
print('Total Accuracy : ', '{:.09f}'.format(accuracy))
if __name__ == '__main__':
run_training()